• 제목/요약/키워드: Macrophage cells

검색결과 1,703건 처리시간 0.029초

LPS로 유도된 대식세포에 대한 와송 핵산추출물의 AP-1과 IRF3 전사인자의 억제에 의한 전염증성 사이토카인의 감소 효과 (Orostachys japonicus Hexane Fraction Attenuates Pro-inflammatory Cytokines in LPS-activated Macrophage Cells by Suppression of AP-1 and IRF3 Transcription Factors)

  • 이형선
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.310-315
    • /
    • 2020
  • 본 연구는 와송에 유기용매를 활용하여 순차적으로 추출하여 항염증 활성에 대한 가능성을 평가하기 하기 위해 수행되었다. 대식세포에 와송 hexane 추출물을 전처리하고 LPS로 염증을 자극하여 염증과 관련한 세포내 신호전달 경로에 미치는 영향을 확인하고자 하였다. 대식세포에 와송 hexane 추출물은 LPS 자극에 의해 세포 독성이 나타나지 않았고, ROS의 생성을 억제하는 것으로 확인되었다. 또한, IL-1β, IL-2, IL-6, IP-10과 같은 전염증성 사이토카인의 분비를 mRNA 수준에서 확인한 결과 탁월하게 억제하였다. 이러한 전염증성 사이토카인의 생성 억제는 상위 전사인자인 AP-1과 IRF3의 조절을 통해 이루어지므로 이들을 단백질 수준에서 발현량을 확인하였다. 그 결과 c-Jun, c-Fos, IRF-3의 인산화 억제로 핵 내 전사활성이 제한되었을 것으로 생각된다. 이들 결과를 종합해볼 때, 와송 hexane 추출물은 염증 반응을 저해하는 효과가 있는 것으로 나타나 다양한 염증성 질환의 예방 및 개선에 유용하게 활용할 수 있을 것으로 생각된다.

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

Evaluation of Boldine Activity against Intracellular Amastigotes of Leishmania amazonensis

  • Salama, Isabel Cristina;Arrais-Lima, Cristina;Arrais-Silva, Wagner Welber
    • Parasites, Hosts and Diseases
    • /
    • 제55권3호
    • /
    • pp.337-340
    • /
    • 2017
  • Leishmaniasis is a neglected and endemic disease that affects poorest population mainly in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate in vitro activity of boldine against Leishmania amazonensis murine cell infection. Boldine ((S)-2,9-dihydroxy-1,10-dimethoxy-aporphine) is an aporphine alkaloid found abundantly in the leaves/bark of boldo (Peumus boldus Molina), a widely distributed tree native to Chile. The in vitro system consisted of murine macrophage infection with amastigotes of L. amazonensis treated with different concentrations from 50 to $600{\mu}g/ml$ of boldine for 24 hr. Intracellular parasite destruction was assessed by morphological examination and boldine cytotoxicity to macrophages was tested by the MTT viability assay. When cells were treated with $100{\mu}g/ml$ of boldine the reduction of parasite infection was 81% compared with untreated cultures cells. Interestingly, boldine-treatment caused a concentration-dependent decrease of macrophage infection that culminated with 96% of reduction when cells were submitted to $600{\mu}g/ml$ of boldine. Cell cultures exposed to $100{\mu}g/ml$ of boldine and $300{\mu}g/ml$ of $Glucantime^{(R)}$ during 24 hr showed a significant reduction of 50% in parasitized cells compared with cell cultures exposed just to $Glucantime^{(R)}$. The study showed that treatment with boldine produces a better effect than treatment with the reference antimonial drug, glucantime, in L. amazonensis infected macrophage. Our results suggest that boldine is a potentially useful agent for the treatment of leishmaniasis.

Cloning of Bovine Macrophage Colony-stimulating Factor

  • Kim, Tae-Yung;Kim, Cheol-Ho;Lee, Sang-Gil;Kang, Chung-Boo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.892-897
    • /
    • 2005
  • Macrophage colony-stimulating factor (M-CSF) is a growth factor required for growth and differentiation of mononuclear phagocyte lineage. Total and 16 poly (A) mRNA of bovine M-CSF were isolated from healthy bovine peripheral mononuclear cells stimulated by phobol 12-myristste 13-acetate (TPA). The more compatible cultured mononuclear cells were 5${\times}$10/ml for RNA isolation. TPA-activated mononuclear cells increased the level of M-CSF-mRNA more than concanavalin A (Con A) and lipopolysaccharide (LPS). The optimal analysis of reverse transcriptase-polymerase chain reaction (RT-PCR) for14 Macrophage colonystimulating factor (M-CSF) as a growth factor required for bovine M-CSF was denaturation at 94$^{\circ}C$ for 1 minute, annealing at 57$^{\circ}C$ for 1 minute, extension at 72$^{\circ}C$ for 1 minute for 30 cycles. The size of cDNA of bovine M-CSF by RT-PCR was 774 base pairs. A 774 base pairs cDNA encoding bovine M-CSF was synthesized by reverse transcriptase polymerase chain reaction (RT-PCR). Ligated cDNA was transformed to competent cells and then plasmid isolation and digestion was performed. Molecular cloning and sequencing were performed for cDNA of bovine M-CSF. The size of cloned cDNA of bovine M-CSF was 774base pairs. The homology of base sequence and amino acid sequence was 88% and 86% compared with known human M-CSF, respectively. From a high degree of sequence similarity, the obtained cDNA of bovine M-CSF is thought be a specific gene of bovine M-CSF.

Effects of Non-Saponin Red Ginseng Components (NSRG) on Functions of Macrophages Isolated from Young and Aged Mice

  • Kim, Kyung-Ho;Jang, Seon-A;Kim, Kyung-Suk;Park, Sul-Kyoung;Park, Hye-Jin;Lee, Soo-Jin;Pyo, Suh-Kneung;Sohn, Eun-Hwa
    • Journal of Ginseng Research
    • /
    • 제33권3호
    • /
    • pp.177-182
    • /
    • 2009
  • Macrophages play an important role in the first line of immunologic effects against tumor cells. The effects of nonsaponin red ginseng (NSRG) components on macrophage functions like tumoricidal activity, phagocytic activity, and NO production in young (8-weeks-old) and aged (82-weeks-old) male C57BL/6 mice were assessed in vitro, respectively. The treatment of tumor cells (melanoma B16 cells) with the supernatants of NSRG-treated macrophages resulted in an increase of cytotoxicity at 300 $\mu$g/ml in the aged mice, whereas the supernatants did not have a cytotoxic effect in the young mice. It was observed that the supernatants induced the increase of tumor cell proliferation at 150 $\mu$g/ml in the young mice, suggesting that the supernatants contain growth factors rather than cytotoxic molecules. In addition, NSRG alone had a direct cytotoxic effect on the B16 tumor cells. NSRG had no effect on the NO production by the macrophages in the young mice, while it significantly increased the level of NO release in the aged mice. There was no difference in the phagocytic activities of the macrophages by NSRG in both groups of mice. These results suggest that NSRG has differential effects on the macrophage functions in young and aged mice.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

포도 추출물들의 자유 라디칼 소거 작용 마우스 대식세포주의 염증 발현 매개 인자들에 대한 생성 억제 효과 (Effects of Grape Extracts on Free Radical Scavenging Activity and Inhibition of Pro-Inflammatory Mediator Production in Mouse Macrophage Cells)

  • 민혜영;박은정;이상국;조용진
    • 한국식품과학회지
    • /
    • 제35권1호
    • /
    • pp.132-137
    • /
    • 2003
  • 국내에서 생산된 거봉 및 캠벨 포도의 씨, 줄기 및 껍질 추출물에 대하여 항산화 작용, 염증 관련 인자 생성에 미치는 활성 및 암세포 성장에 대한 영향 등을 resveratrol과 비교하여 평가하였다. 그 결과 포도 추출물 중 거봉줄기, 캠벨줄기, 캠벨씨 및 거봉씨 추출물들이 항산화 능력을 나타내었고 그 중 거봉씨 추출물은 vitamin C와 효력이 유사하게 나타나 항산화 효능이 우수함을 알 수 있었다. 또한 마우스 대식세포주인 RAW 264.7 cell을 이용하여 포도 추출물들의 LPS처리에 의한 $PGE_2$ 및 NO 생성을 저해 여부를 확인한 결과, 거봉줄기, 거봉씨, 및 캠벨씨 추출물이 $50\;{\mu}g/mL$에서 $PGE_2$ 및 NO 생성을 50% 가량 저해하는 효능을 나타내었다. 또한 사람 폐암 및 대장암 세포주를 이용하여 포도 추출물들이 암세포 성장 저해 효과를 나타내는지를 확인하였는데 거봉줄기 및 씨 추출물 $50\;{\mu}g/mL$에서 30% 정도의 암세포 성장 저해 작용을 나타내었다.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway

  • Lee, Jeong-Oog;Choi, Eunju;Shin, Kon Kuk;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Hossain, Mohammad Amjad;Kim, Hyun Soo;Yi, Young-Su;Kim, Donghyun;Kim, Eunji;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.154-160
    • /
    • 2019
  • Background: Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods: The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results: CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-${\alpha}$ and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-$1{\beta}$, interferon-${\beta}$, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. Conclusion: Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.

Anti-inflammatory Effect of Indirubin-3'-Monoxime-5-Sulphonic Acid on Lipopolysaccharide-stimulated Murine Macrophage

  • Park, Gang-Baek;Kim, Hyun-Jin;Heo, Hye-Seon;Park, Geun-Mook;Park, Kyung-Woo;Kim, Jin-Kyung
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.225-230
    • /
    • 2011
  • Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. In this study we investigated the anti-inflammatory effects of an indirubin derivative, indirubin-3’-monoxime-5-sulphonic acid (I3M-5S, $C_{16}H_{11}N_3O_5S$). We found that I3M-5S inhibits the production of various inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) as well as inflammatory cytokines, tumor necrosis factor-${\alpha}$ and interleukin-6 in lipopolysaccharide (LPS) stimulated murine macrophage, RAW264.7 cells. In addition, the expression of inducible nitric oxide synthase and cyclooxygenase-2, which are essential enzymes to produce NO and $PGE_2$, respectively, was blocked by I3M-5S treatment in LPS-stimulated RAW264.7 cells. Present data suggest that I3M-5S exhibits potent anti-inflammatory activity in cultured macrophages and merit further study as potential therapeutic agents for inflammatory disorders.