• Title/Summary/Keyword: Macrofibril

Search Result 5, Processing Time 0.024 seconds

Morphological Change of Men's Hair Shaft by Weathering (풍화작용에 의한 정상모발의 형태학적 변화)

  • Hong, Wan-Sung;Chang, Byung-Soo;Lim, Do-Seon;Park, Sang-Ock;Yoe, Sung-Moon
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • The morphological changes in normal and weathering hair shafts of the human scalp were investigated by using the transmission and scanning electron microscopes. The hair shaft composed of cuticular layer, cortex and medula. The surface of normal hairs are smooth and covered by imbricated cuticular scales. The cuticular layer consists of five to seven cuticle cells. These cells, which are flat and thin, measuring about $100{\mu}m$ long and $0.4{\mu}m$ thick, appears intercellular membrane complex in diameter 25 nm. The cortex composed of melanin granules and cornified cells, which multicomponent concentric microfibrils in diameter about 8 nm give rise to macrofibrils in diameter $0.5{\mu}m$ to $0.8{\mu}m$ encased in limiting membrane. The melanin granules are spherical shaped about $0.5{\mu}m$ in size and scattered between macrofibrils. The medulla in the normal hairs are $16{\mu}m$ in diameter centrally region of cortex. Normal hair shafts undergo progressive degenerative changes due to a variety of environmental insults. In the initial weathering process of hair, the cuticular scales became irregularly raised and broken, and then cuticle cells formed cytoplasmic vacuolation, following dissociated intercellular membrane complex, ultimately entirely lost and nuded cortex. Occasionally, transverse fissures were seen at hair shafts indicating that the hairs were deteriorated. Complete removal of the cuticular layer in the heavily damaged cortex portions appeared splitting of the cortical cell into its macrofibrils and scattering of melanin granules.

  • PDF

Morpholgical Characteristics of Hair Section According to Cutting Tools (커트 도구에 따른 모발 절단면의 형태학적 특성)

  • Lee, Gui-Young;Roh, Jung-Ae;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.347-351
    • /
    • 2008
  • The morphological characteristics of the cut sections of hair using razor, clipper and scissors were investigated with scanning electron microscopy. With the razor, the cutting section had a long elliptical form and a rhythmical ribbon shape. It was curved outward since the end part of it became thinner. With the scissors, the cutting section had a flat, circular form. It seemed to be because the scissors imposed a constant strength on the hair. With the clipper, the cutting section had also a circular form but a layer of the macrofibril was generated in the middle part of the cortex. It seemed to be generated while the rapidly moving blades of the clipper cut the hair in an instant.

Fine Structure of Damaged Hair Shaft by Daily Treatment of Heat for a Beautiful Face (미용을 위한 일상적인 열처리에 의해서 손상된 모발의 미세구조)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The ultrastructure of damaged hair shaft from blow-drying at typical temperature $40{\sim}170^{\circ}C$ for daily beautiful face have been investigated by using transmission electron microscope and scanning electron microscope. When we used to hair dryer for a long time in our everyday life, the following morphological alternations were found in hair. First, the partial of scales in outer cuticle were detached simultaneously with separation of intercellular membrane complex of cuticle cells. Then hair broke cuticle off and exposed to cortex. Secondly, the cortical cell in the cortex was fissured into its macrofibril. The melanin granules were scattered between macrofibrils. As a result, I confirmed that blow-drying removed the hair's bonded water and made hard on hair which lost elasticity. After all, hair showed irregular, rough surface and vanished its luster.

Reological Studies on Cocoon Filament II. Changes of strength and elongation at breaking related to the stretching speed and swelling degree (견사의 탄성적성질에 관한 연구 II. 인장속도 및 팽윤에 따른 파괴강신도의 변화)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.14 no.2
    • /
    • pp.105-112
    • /
    • 1972
  • The effects of the stretching speed and the swelling degree of cocoon filaments on load-elongation curve were tested by tensilon with special attachments. The values of breaking strength, elongation at break and initial tensile strength obtained from load elongation curves are summarized as follows; 1. The breaking strength of the swollen cocoon filament appeared to increase at the high stretching speed, while elongation at break decreased. 2. Load-elongation curve became crinkled at the low speed of stretching. It suggests that both slip and break of the macrofibrils may occur in swelling of cocoon bave. 3. Breaking strength appeared to considerably decrease and elongation at break not to increase in swelling test at 9$0^{\circ}C$ for 60 min. 4. The initial tensile strength was influenced by the stretching speed and swelling degree of cocoon filaments.

  • PDF

Study on the Physicochemical Change of Human Hair Shaft Following Radiation with Ultraviolet (자외선 조사에 따른 모발의 물리화학적 변화에 관한 연구)

  • Chang, Byung-Soo;Na, Su-Kyong;Lee, Gui-Yeong
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • The physicochemical properties of damaged hair by irradiation of ultraviolet-B (UV-B) have been investigated by using transmission electron microscope and scanning electron microscope. The range of irradiation of hair irradiated for expectative 6 hours, 12 hours, 24 hours and 48 hours with stimulated ultraviolet ray. The treated hairs showed characteristic morphological damage pattern in the cornified cell of matrix and the cuticle following time past. The various sized vacuoles in the endocuticle of the cuticular cells was formed. The statistically significant differences in diameter of cuticular cell were observed in terms of tranverse swelling by formation of vacuoles. The hair cortex and matrix undergo long term exposure to UV-B radiation. The macrofibrils of cortex appeared to be affected most by UV-B, although the morphology and volume of melanin granule was not changed. The physicochemical destruction of hair matrix and cuticular cells is largely accelerated by long term irradiation of UV-B.