• Title/Summary/Keyword: Macrocyclic complex

Search Result 88, Processing Time 0.031 seconds

Crystal Structure of Three-Dimensional Copper(II) Macrocyclic Complex Linked by Hydrogen-Bonds (수소 결합에 의한 사차원의 Copper(II) 거대고리 착물의 결정구조)

  • Park, Ki-Young;Hong, Choon-Pyo;Lee, Hye-Ok;Choo, Geum-Hong;Suh, Il-Hwan;Kim, Jin-Gyu;Park, Young-Soo
    • Korean Journal of Crystallography
    • /
    • v.11 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • The complex [Cu(L)(H2O)2] (PDC)(1)(L=2,5,9,12-tetramethyl-1,4,8,11- tetraazacyclotetradecane;PDC=1,4-pyridinedicarboxylate) has been synthesized and characterized by X-ray crys-tallography. The compound 1 crystallizes in the triclinic space group P1, with a=7.553(1)Å, b=9.619(2)Å, c=10.692(2)Å, α=74.22(1)°, β=73.32(1)°, γ=78.70(1)°, V=710.1(2)Å3, Z=1,R1(wR2) for 2634 observed reflections of [I>2σ(I)] was 0.0854(0.2242). The compound 1 is interconnected to give a three-dimensional network through weak hydrogen-bonding interactions.

  • PDF

Crystal Structure of Macrocyclic Tetraamine Thiocyanate Copper(II) Complex (거대고리 Tetraamine Thiocyanate Copper(II) 착물의 결정구조)

  • Choe, Gi-Yeong;Kim, Chang-Seok;Seo, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.11-14
    • /
    • 1998
  • The synthesis and characterization of [Cu(L)](NCS)2 (1) (L:2,5,9,12-Tetramethyl-1,4,8,11-tetraazacyclotetradecane) are described. Crystal structure of 1 crystallizes in the monoclinic system, space group P21/a, a=7.622(2)Å, b=17.645(2) Å, c=8.223(3) Å, β=109.99(2)˚ Z=2. Least-squares refinement of 1 led to a R(Rw) factor of 0.087 (0.158) for 1535 observed reflections of F0>40(F0). The complex 1 has a square planar geometry with average Cu-N (secondary amines) bond distance of 2.030(4)Å. The axially disposed thiocyanate anions are not coordinated with Cu-N distances of 2.842(7) Å.

  • PDF

Crystal Structure of Three-Dimensional Nickel(II) Tetraaza Macrocyclic Complex Linked by Hydrogen-Bonds (수소 결합에 의한 이차원의 Nickel(II) Tetraaza 거대 고리 착물 결합구조)

  • Park, Ki-Young;Choo, Geum-Hong;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.13 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • The complex [Ni(L)](BDC)·4H₂O (1) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[16,4,O/sup 1.18/,O/sup 7.12/] docosane; BDC = 1,3-benzenedicarboxylate) has been synthesized and characterized by X-ray crystallography. Compound 1 crystallizes in the orthorhombic space group Pcnb, with a = 8.764(2) , b = 17.687(2) , c = 19.475(1) , V = 3018.7(8) ³, Z = 4, R₁, (wR₂) for 2148 observed reflections of [1>2σ(I) was 0.0822 (0.2236). Compound 1 is interconnected to give a three-dimensional network through weak hydrogen-bonding interactions.

Synthesis and Characterization of Schiff Base Metal Complexes and Reactivity Studies with Malemide Epoxy Resin

  • Lakshmi, B.;Shivananda, K.N.;Prakash, Gouda Avaji;Isloor, Arun M.;Mahendra, K.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.473-482
    • /
    • 2012
  • A novel malemide epoxy containing Co(II), Ni(II) and Cu(II) ions have been synthesized by curing malemide epoxy resin (MIEB-13) and Co(II), Ni(II) and Cu(II) complexes of macrocyclic bis-hydrazone Schiff base. The Schiff base was synthesized by reacting 1,4-dicarbnyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol. The Schiff base and its Co(II), Ni(II) and Cu(II) complexes have been characterized by elemental analyses, spectral (IR, $^1H$ NMR, UV-vis., FAB mass, ESR), thermal and magnetic data. The curing reaction of maleimide epoxy compound with metal complexes was studied as curing agents. The stability of cured samples was studied by thermo-gravimetric analyses and which have excellent chemical (acid/alkali/solvent) and water absorption resistance. Further, the scanning electron microscopy (SEM) and definitional scanning colorimetric (DSC) techniques were confirmed the phase homogeneity of the cured systems.

Synthesis and Molecular Structure of Macrocyclic Chlorotetraamine Cadmium(II) Complex (거대고리 Chlorotetraamine Cadmium(II) 착물의 합성과 분자 구조)

  • 최기영;서일환;추금홍
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.133-136
    • /
    • 2000
  • The molecular structure of [Cd(L)Cl]Cl·2H₂O(1)(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0/sup 1.18/,0/sup 7.12/]docosane) has been determined by X-ray diffraction. Crystallographic dta for 1: triclinic space group P1, a=9.671(1), b=10.784(1), c=12.679(2)Å, α=112.31(1), β=99.49(1), γ=93.95(1)°, V=1230.6(3)ų, Z=2, R=0.0779. The coordination of the cadmium atom is a distorted square-pyramid with four secondary amines of the macrocycle occupying the basal sites (Cd-N/sub av/=2.300(3)Å) and a terminal chlorine atom at the axial position with a Cd-Cl(1) distance of 2.463(2)Å.

  • PDF

Syntheses and Crystal Structures of Xylyl-Bridged NO2S2-Donor Macrocycles and Binuclear Mercury(II) Complex

  • Lee, Ji-Eun;Jin, Yong-ri;Seo, Joo-beom;Yoon, Il;Song, Mi-Ryoung;Lee, So-Young;Park, Ki-Min;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.203-207
    • /
    • 2006
  • Isomeric series of dilinked $NO_2S_2$ macrocycles ($L^2$: para-, $L^3$: meta- and $L^4$: ortho-linked) capable of binuclear complexing ability were prepared from its monomeric analog $L^1$ in reasonable yields except ortho-type reaction, which led to mixture due to the formation of monomer-type macrocyclic quaternary ammonium bromide $L^5$. Moreover, L2 (as $2HNO_3$ form) and $L^5$ were confirmed by an X-ray crystallography. Reaction of $HgCl_2$ with $L^2$ yielded a binuclear complex $[Hg_2(L^2)Cl_4]$. In the complex, each mercury(II) has a distorted tetrahedral environment made up of S and N donors from an exodentate $L^2$ and two coordinated Cl atoms.

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Synthesis and Properties of Tetraaza Macrocycles Containing Two 3-Pyridylmethyl, 4-Pyridylmethyl, or Phenylmethyl Pendant Arms and Their Nickel(Ⅱ) and Copper(Ⅱ) Complexes: Effects of the Pendant Arms on the Complex Formation Reaction

  • Kang, Shin-Geol;Kim, Seong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.269-273
    • /
    • 2003
  • The synthesis and properties of 2,13-bis(3'-pyridylmethyl) $(L^3)$, 2,13-bis(4'-pyridylmethyl) $(L^4)$, and 2,13-bis(phenylmethyl) $(L^5)$ derivatives of 5,16-dimethyl-2,6,13,17-tetraazatrcyclo$[16.4.0.^{1.18}0^{7.12}]$docosane are reported. The 3- or 4-pyridylmethyl groups of $[ML^3](ClO_4)_2\;or\;[ML^4](ClO_4)_2$ (M = Ni(Ⅱ) or Cu(Ⅱ)) are not involved in coordination, and the coordination geometry (square-planar) and ligand field strength of the complexes are quite similar to those of $[ML^5](ClO_4)_2$, bearing two phenylmethyl pendant arms. However, the complex formation reactions of $L^3\;and\;L^4$ are strongly influenced by the pyridyl groups, which can interact with a proton or metal ion outside the macrocyclic ring. The macrocycle $L^5$ exhibits a high copper(Ⅱ) ion selectivity against nickel(Ⅱ) ion; the ligand readily reacts with copper(Ⅱ) ion to form $[CuL^5]^{2+}$ but does not react with hydrated nickel(Ⅱ) ion in methanol solutions. On the other hand, $L^3\;and\;L^4$ form their copper(Ⅱ) and nickel(Ⅱ) complexes under a similar condition, without showing any considerable metal ion selectivity. The ligands $L^3\;and\;L^4$ react with copper(Ⅱ) ion more rapidly than does $L^5$ at pH 6.4. At pH 5.0, however, the reaction rate of the former macrocycles is slower than that of the latter. The effects of the 3- or 4-pyridylmethyl pendant arms on the complex formation reaction of $L^3\;and\;L^4$ are discussed.

Study on Morphology Control of Polymeric Membrane with Clathrochelate Metal Complex (Clathrochelate계 금속 착물을 이용한 고분자 멤브레인 구조 제어)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.472-483
    • /
    • 2014
  • This study is preparation of microporous membranes by using macrocyclic metal ion complexes and extended cage complexes. It is a more favorable way to existing methods because polymer and metal ion-ligand complex system provides a fine control over the phase transition behavior. Chemical functionalization of the polar surface can be obtained. Metal-templated condensation of cyclohexanedione dioxime, hydroxyphenylboronic acid in the presence of metal salts proceeds cleanly in methanol to furnish the metal clathrochelate complexes. Organic/inorganic hybrid membranes were prepared with polyethersulfone (PES), polyvinylpyrrolidone (PVP), ethyleneglycol butyl ether (BE), metal clathrochelate s and DMF by using nonsolvent induced phase inversion method. The structure of membranes was characterized with scanning electron microscopy (SEM) and microflow permporometer. The addition of Fe(II) clathrochelate complex with p-hydroxyphenyl group leads to changes of membrane morphology such as narrow mean pore size distribution, increase of surface pore density and decrease of the largest pore size.

Electronic Spectroscopy and Ligand Field Analysis of cis-$>[Cr(cycb)Cl_2]$Cl

  • Choi, Jong-Ha;Oh, In-Gyung;Subodh Kumar;Ryoo, Keon-Sang
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • The sharp-line absorption spectrum of microcrystalline samples of cis-[Cr(cycb)$Cl_2$]Cl (cycb=rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) has been measured between 13000 and $16000 cm^{-1}$ at temperatures down to 5K. The 77K emission and excitation spectra, and 298 K infrared and visible absorption spectra have also been measured. The nine electronic bands due to spin-allowed and spin-forbidden transitions were assigned. Using the observed transitions, a ligand field analysis has been performed to probe the ligand field properties of coordinated atoms in the title chromium(III) complex. The zero-phonon line in the sharp-line absorption spectrum splits into two components by $240 cm^{-1}$ , and the $large ^2$$_E{g}$ splitting can be reproduced by the modem ligand field theory. It is confirmed that nitrogen atoms of the macrocyclic cycb ligand have a strong $\sigma$-donor character, but chloride ligand has weak $\sigma$- nd $\pi$-donor properties toward chromium(III) ion.n.

  • PDF