• Title/Summary/Keyword: Machining unit

Search Result 142, Processing Time 0.027 seconds

Design of High Speed Machine Tool Spindle Regarding Vibration Characteristics (진동특성을 고려한 공작기계 초고속 주축 설계)

  • 김종관;박보용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.99-103
    • /
    • 1991
  • 본 논고에서는 Radial 및 Axial 하중을 동시에 받을 수 있고, 예압에 의해 주축강성을 증대시킬수 있으며, Ball수의 증가로 부하능력을 향상시킨 초정 밀.초고속용 Angular ball bearing을 조합 사용하고, 고속회전에 지금까지 개 발된 ball bearing 윤활방법 중 가장 효과적인 간헐적인 oil 공급과 air 압력 으로, 계속 ball을 냉각, 윤활시켜주는 air oil 윤활법의 채용과, 국내 공작기 계 제조회사들이 주로 사용하는 일본 FAMUC AC Spindle motor(FAMUC-H type : 8000-15000rpm)를 사용해서 초고속 주축의 최적 설계조건을 제시하기 위한 기초연구 단계로 MT40-12000rpm 급의 Machining center용 Cartridge type의 Spindle unit개발을 통해서 주축설계에 따른 문제점과 연구용 주축제작의 생산 기술적 문제점 및 진동특성을 검토 하고자 한다.

  • PDF

The Optimization of a Hydrostatic Spindle System for Grinding Machines (연삭기용 유정압베어링주축의 최적화에 관한 연구)

  • Lee, C.H.;Park, C.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.140-147
    • /
    • 1996
  • Machining accuracy of machine tools spindles using the hydrostatic bearing, largely depends on the static stiffness and the thermal deformation of the spindle unit. In this paper, the modelling and static, thermal analysis of the hydrostatic spindles were performed for the relationship between the design variables like the bearing span, overhang, bearing stiffness and static stiffness at spindle. The goal of optimization is the mazimum, static stiffness at spindle nose with lower temperature rise in hydrostatic bearing. Temperature rise of hydrostatic bearing is minimized with the variables of spindle diameter and oil supply pressure. Finally, validity of the proposed algorithm is verified by improving the static, thermal performance of the existing hydrostatic spindles.

  • PDF

Development of Micro Punching System (미세 구멍 펀칭 기구 개발)

  • Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.213-216
    • /
    • 2001
  • A micro hole punching system was developed and micro holes of 100m in diameter were successfully made on brass sheets of loom in thickness. A micro punch made of tungsten carbide was designed to withstand the punch load, considering the buckling and the bending moment due to possible misalignment error. The punch was fabricated by the grinding process with diamond wheel. The die was designed considering the punch load and fabricated by micro electrodischarge machining process. In this system the stripper is designed to guide punch tip to minimize the possible misalignment. The punch was installed on a vertical stepper and the die was mounted on an X-Y translation unit. The precision motion controller controlled all motions of the micro hole punching system. In this study technical difficulties and solutions in the micro hole punching process were also discussed.

  • PDF

A Study on the Characteristics of a Wafer-Polishing Process at Various Machining and Oscillation Speed (웨이퍼 폴리싱 공정의 회전속도와 진폭속도에 따른 가공특성 연구)

  • Lee, Eun-Sang;Lee, Sang-Gyun;Kim, Sung-Hyun;Won, Jong-Koo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The polishing of silicon wafers has an important role in semiconductor manufacturing. Generally, getting a flat surface such as a mirror is the purpose of the process. The wafer surface roughness is affected by many variables such as the characteristics of the carrier head unit, operation, speed, the pad and slurry temperature. Optimum process conditions for experimental temperature, pH value, down-force, slurry ratio are investigated, time is used as a fixed factor. This study carried out a series of experiments at varying platen, chuck rpm and oscillation cpm taking particular note of the difference between the rpm and the affect it has on the surface roughness. In this experiment determine the optimum conditions for polishing silicone wafers.

Quality Function Deployment of Core Unit for Reliability Evaluation of Machine Tools (공작기계 핵심부품의 QFD 기술)

  • 송준엽;이승우;강재훈;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developing for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also apply QFD technique for satisfying quality function which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF

Evaluation of Reliability for critical unit of machinery system (기계류 핵심 유니트의 신뢰성 평가기술)

  • 이승우;송준엽;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1014-1017
    • /
    • 2000
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also have constructing WEB system for suppling reliability which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF

Method and Application of Reliability Evaluation for Core Units of Machine Tools (공작기계 핵심 Unit의 신뢰성 평가 기법 및 활용에 관한 연구)

  • 이승우;송준엽;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-46
    • /
    • 1997
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high sped and intelligent have been developing for betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and designed and manufactured reliability test-bed to evaluate reliability. In addition we acquired reliability data using test-bed system and made database to handle reliability data. And also we not only use reliability data by analyzing reliability, but also apply design review method using analyzing critical units of machinery system. Form this study, we will expect to guide and increase the reliability engineering in developing and processing phase of high quality product.

  • PDF

Machining of the Inject Mould for Forming the Dot Pattern of LGP of TFT-LCD (TFT-LCD의 도광판 패턴 사출성형용 금형가공)

  • 박동삼;최영현;하민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1215-1219
    • /
    • 2003
  • Light Guide Panel(LGP) is a key part of backlight unit(BLU) which transforms line-light of lamp to surface-light. Dot pattern is formed on the injected LGP surface by screen printing. This dot pattern is composed of several ten thousands micro dots of diameter 150-180$\mu\textrm{m}$ or so. The dot patterning by screen printing causes low productivity and low performance of TFT-LCD. This research develops the micromachining technology for LGP mould which could form micro dot pattern by injection molding, removing the existing screen printing process.

  • PDF

Effect of Plastic Strain on the Surface Integrity of Steel (금속의 Surface Integrity에 미치는 소성스트레인의 영향)

  • Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.94-102
    • /
    • 1989
  • The effect of plastic strain on the surface integrity of mild steel (SS 41) was studied. This paper shows that the recrystallization technique is adequate to evaluate the plastic strain in a machined surface experimentally. The relations between the plastic strain and the machining conditions are quantitatively evaluated by using the recrystallization technique. The obtained results are summarized as follows. 1. The surface integrity of steel is considerably influenced by the amount of surface region deformation produced by changes in cutting conditions. 2. The plastic strain in machined surface produced by changes of the cutting conditions is evaluated by the recyrstallization technique. 3. The plastic strain increases with the increase of depth of cut and the decrease of rake angle. 4. When the cutting force is high and the rake angle is small, the value of maximum true strain reaches to high. 5. The maximum true strain is related to the cutting energy, and the values increase with the increase of the unit shear and total engergy in constant depth with the increase of the energy values.

  • PDF

A Study on the Thermal Experiment for the Compensation of Thermal Deformation in Machine Tools (공작기계 열변형 보정을 위한 발열실험 방법에 관한 연구)

  • 윤인준;김형식;고태조;김희술
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Thermal distortion is a critical issue in machine tools, especially in high speed machining. This is the reason why recent machine tools have thermal compensation function. To compensate thermal distortion, it is necessary to make a model that has some relationship between temperature and deformation. Various experimental methods ye widely been used in thermal test: constant spindle speed, unit step speed increase, random spindle speed, etc. This paper focuses on which type of spindle operation condition is good for thermal experiment. Also, experimental data is modeled using multiple linear regression models and compared each other to select a method. Consequently, it turned out at e condition of 75% constant of maximum spindle speed is good enough to generate temperature and distortion data.