• Title/Summary/Keyword: Machining tolerance

Search Result 104, Processing Time 0.021 seconds

A study on Rough machining path generation of sculptured surface by bisection method (이분법에 의한 자유곡면 황삭가공 경로산출에 관한 연구)

  • 신동혁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.157-163
    • /
    • 1995
  • This paper presents an algorithm to deternine the tool path height for rough machining of sculptured surface. To minimize rough machining of sculptured surface, it is necessary to determine the tool path heights of contour planes. the proposed algorithm searches for the height at which maximum metal removal rate is obtained. This bisection method is accomplished until all shoulder heights are within roughing tolerance. The machining experiment demonstrates the superiority of the algorithm presented in this thesis.

  • PDF

Development of an Automatic Tool Compensation System in NC Lathe Machine (NC 선반가공에서 자동공구보정시스템의 개발)

  • Ju, Sang-Yoon;Kang, Byeung-Phil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.47-54
    • /
    • 1999
  • Tool wear is one of major causes occurring defectives in NC machining. In this paper we developed an automatic tool compensation system for the NC lathe machining. The system compensates machining error without any help of operators whenever the specification of a part is out of a tolerance. The configuration of the automatic compensation system consists of a NC lathe, an autoloader, a sensor, and a PLC. The system is operated as follows. A workpiece loaded by the autoloader is machining on the NC lathe. Once the workpiece is machined to be turned to a part, it is moved onto the sensor to be measured. If the sensor detects a part out of tolerance, a tool compensation is made in the NC controller. The system gives a help in increasing the productivity by reducing occurrence of defective parts as well as by eliminating time for the tool compensation. Besides the productivity increase, the system calculates cumulative usage time of the tool and notices the tool replace time to a worker by an alarm signal. A case is introduced to show that the system can be applied effectively in a shop.

  • PDF

A study of On-Machine Measurement for PC-NC system

  • Yoon, Gil-Sang;Kim, Gun-Hee;Cho, Myeong-Woo;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.60-68
    • /
    • 2004
  • The purpose of this paper is to establish an effective inspection system by using OMM (On-Machine Measurement) system based PC-NC. This system can reduce manufacturing lead time because a workpiece is inspected at every machining process and the manufacturing system which includes inspection faculty is able to realize on-line process on CNC machining center. The proposed OMM system is composed of a few algorithms for determination of inspection parameters. It is accomplished by determining the number of measuring points, their location, measuring path using fuzzy logic, Hammersley's method, TSP (Traveling Salesperson Problem) algorithm. The inspection feature applied to this system is based on machining feature. This method is tested by simulation and experiment that are analyzed measuring data and geometry tolerance.

Effects of the Grinding Conditions on the Shape of Center Ground Part (연삭조건이 원통연삭 공작물 형상에 미치는 영향)

  • Cho, Jae-Il;Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.61-68
    • /
    • 1998
  • The form accuracy of parts has become an important parameter. Therefore, dimensional tolerance and geometric tolerance are used in the design stage to satisfy required quality and functions of parts. But the informations on the machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them. The results are as follows, The effects of work speed and depth of cut on workpiece shape are negligible compared with the effect of traverse speed. There is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increased.

  • PDF

Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation (기상측정시스템과 오차보정을 이용한 가공정밀도 향상)

  • 최진필;민병권;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.

A study on the automatic compensation of machining error in NC turning (NC 선반가공에 있어서 가공오차의 자동 보정에 관한 연구)

  • 박천경;박동삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1542-1551
    • /
    • 1990
  • This paper shown how to measure the machining error in diameter of cylindrical workpiece and compensate the measured machining error in NC turning. Machining error is measured by the electric micrometer mounted on the tool post with the NC part program for probe location path analyzed. Correct NC part program for finish turning is automatically generated to compensate the measured machining error. These concepts have been effectively introduced to a newly developed software for error compensation. In turning experiments with the developed error compensation system, machining error was almost within the specified tolerance, which reveals the effectiveness of the developed system.

Dimension-Tolerance Design with Cost Factors (비용요소를 고려한 치수공차설계)

  • 강병철;윤원영
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.172-191
    • /
    • 1998
  • In this paper, dimension tolerance design for components is studied. Three cost factors are considered: machining cost, rework cost, and loss related to product quality which is affected by the tolerances of components. We propose a procedure to determine the optimal tolerances of components and a, pp.y the procedure to design the tolerances of fine motion stage in semicoduct machine. We compare the proposed procedure with the existing model for determining tolerance economically.

  • PDF

A Study on CAM System for Machining of Sculptured Surface in Mold Cavity(1) - Generation of High Precision Machining Data for Curved Surfaces - (3차원 자유곡면 가공용 CAM시스템의 개발에 관한 연구(1) -고정도 곡면가상 정보 생성을 위한 이론적 고찰-)

  • 정희원;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-100
    • /
    • 1994
  • For generating NC machining data automatically, it is important to handle computer models such as geometric shape data including engineering specifications for the mechanical part to be manufactured. We proposed unique CAM system for a personal computer that can define the geometric shape in an ease manner and machine the sculptured surfaces of a mold cavity. In this paper, the theoretical basis of generation of high precision machining data for a mold cavity is obtained. The first is geometric modelling, and the second is high precision machining with an optimized tool path algorithm satisfying given tolerance limits. Especially, the bicubic Bezier basis function is adopted for a geometric modelling.

  • PDF

Off-line Control of Machining Error in a Flexible Ball End Milling System (유연 볼 엔드밀에 의한 가공오차의 Off-line 제어)

  • 심충건;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.468-484
    • /
    • 1992
  • 본 연구에서는 기존의 유연 볼 엔드밀의 절삭력 모델을 바탕으로 자유 곡면의 정삭 가공에서 발생할 수 있는 과대 또는 과소 절삭을 방지하면서 그 가공의 효율성을 높이기 위한 볼 엔드밀의 이송 속도 결정법을 제시하고자 한다. 먼저, 자유 곡면의 가공에서 발생될 수 있는 공구의 처짐에 따른 가공오차에 대하여 볼 엔드밀 공구의 처 짐벡터와 공작물의 공구 접촉점에서의 법선벡터로 표현되는 가공오차(machining error ) 예측 모델식을 유도하였다. 본 가공오차 예측 모델식은 다시 절삭날당 가지는 이 송량의 함수로 전개되어 그 곡면의 주어진 가공 공차(machining tolerance)를 만족시 키는 이송속도를 결정하게 된다.

정형가곡을 위한 공구경로 보상 : 윤곽가공을 중심으로

  • 서석환;조정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.34-38
    • /
    • 1992
  • Geometry based CAD/CAM system is hard to achieve "net shape machining" For a net shape machining, the machining errors should be compensated by off-line CAD/CAM system followed by on-line control system. In this paper, we investigate an off-line compensation scheme for the machining errors due to tool deflection in contouring operation. The significance of the deflection errors is first shown, and a compensation is sought via modifying the nominal tool path. In modification, tool deflection amount is iteratively compensated until the deflection amount is iteratively compensated until the deflected path results in the desired contour within a tolerance. The path modification algorithm has been tested via computer simulation. The developed algorithm can be used as a postprocessor for the current CAD/CAM system based on geometric modeling as a means for enhancing the machining accuracy.