• Title/Summary/Keyword: Machining effect

Search Result 576, Processing Time 0.025 seconds

The Influence of The Burr Reduction by The Chemical Reaction of Oxide Film on Aluminum (알루미늄 박막의 표면화학반응이 버 감소에 미치는 영향)

  • 이현우;박준민;정상철;정해도;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.907-910
    • /
    • 1997
  • With increasing the needs for micro and precision parts, micro machining technology has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. But there are many problems to be solved requiring a high-level technology. So this research presents the new method to fabricate a small part through applying chemical mechanical micro machining (C3M) for the Al wafer. Al(thickness I ,u m) was sputtered on the Si substrate. Al is widely used as a lightweight material. However form defect such as burr has a bad effect on products. To improve machinability of ductile material, oxide layer was formed on the surface of AI wafcr before grooving by chemical reaction with HN03(10wt%). And then workpieces were machined to compare conventional micro-machining process with newly suggested method at different machining condition such as load and feed rate. To evaluate whether or not the machinability was improved by the effect of chemical condition, such as the size, the width of grooves 'and burr generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11 (STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories (수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석)

  • Jeon, Eun-chae;Lee, Yun-Hee;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

Development of High Speed Machining Technology (고속절삭가공기술개발)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.266-272
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and hugh fried rate, high-speed machining can alive great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is discussed fur the results of surface roughness and machining error in Z-direction of the high speed machining.

  • PDF

Study on the High-Speed Machining Using High Speed Tooling System in Machining Center (범용 머시닝센터에서 주축증속기를 이용한 고속절삭에 관한 연구 -주축의 회전정도(Run-Out)가 가공특성에 미치는 영향 -)

  • 김경균;이용철;이득우;김정석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.41-45
    • /
    • 1996
  • In order to realize the high-speed machining, the relative technologies for high speed machining tool and high speed machining are required now, The machining accuracy is influenced on the disturbance by the synchronized working conditions(cutting force, spindle Run-out, thermal deformation etc.) In this paper, the effect of spindle Run-out for the high speed machining is investigated. The results show that the spindle Run-out has a great influence on the machining accuracy in high speed machining.

  • PDF

Machining Rate and Electrode Wear Characteristics in Micro-EDM of Micro-Holes (미세구멍의 미세방전 가공에서 가공율과 전극소모 특성)

  • Kim, Gyu-Man;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.94-100
    • /
    • 1999
  • Micro-EDM is widely used in machining of miro-parts such as micro-shafts and micro-holes. In order to select proper machining conditions and to reduce the machining time, it is necessary to understand machining characteristics under various machining conditions. Micro-hole machining tests were performed with round shape electrodes with different capacitances and voltages of the power source. The effects of the electrode rotational speed and diameter on the machining rate were also observed. From the experimental results, it was found that capacitance and voltage have significant effects on machining rate and the machined surface integrity. With higher capacitance and higher voltage, higher machining rate was observed together with poorer surface integrity. The electrode diameter was also found to have an effect on the machining rate and electrode wear.

  • PDF

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.

A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments (실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구)

  • 권병두;고태조;정종윤;정원지;이춘만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.393-396
    • /
    • 1997
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut and feed rate are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

  • PDF

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.