• Title/Summary/Keyword: Machining characteristics

Search Result 1,093, Processing Time 0.02 seconds

Development of Accurate Bevel Gear Die (정밀 베벨 기어 금형개발)

  • 이광오;진민호;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.43-46
    • /
    • 2003
  • To develop bevel gear dies that have characteristics of high precision and enough life time, the technology of die manufacturing and design which increase the resistance of wear and fatigue is essentially needed. Here in the study, we have investigated several materials for dies and electrode. And, the most economical and suitable electrode material has been selected through the characteristic analysis of electrode materials such as copper, graphite and chromium copper. With the help of CAD/CAM/CAE, the total manufacturing system of high precision electrode for bevel gear has been established.

  • PDF

Expert System for Assemblability of Products based on the Assembly Feature in Screwing (나사작업에 있어서의 조립형상 특징을 기초로 한 조립용이화 제품설계 전문가시스템 개발)

  • Mok, Hak-Soo;Kim, Gyung-Yun;Lee, Jae-Cheol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.153-180
    • /
    • 1994
  • The assemblability is determined by the structure of product and the relationship between composing parts and machining parts. In this paper, the bolt was divided into bolt-head, -shaft, -thread and -end. For higher assemblability in bolting process, it was analyzed the geometric and technological characteristics of bolts were analysed regarding pre- and in-assembly process. And this paper presents the knowledge-based expert system to assist for designer in the processor of designing bolt for easier assembly. The developed expert system for supporting bolt design assemblability which is named as BDFA SYSTEM consists of two system such as "BOLT DESIGN SYSTEM" which provide feasible assembly bolt design to designer and "EVALUATION SYSTEM" which provide assembly evaluation to alternative of bolt design.

  • PDF

Fabrication of Micro Mirror Array for Small Form Factor Optical Pick-up by Micro UV-Molding (마이크로 UV성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.477-481
    • /
    • 2005
  • Wafer scale micro mirror array with high surface quality for small form factor (SFF) optical pick-up was fabricated by micro UV-molding. To replicate micro mirror array for SFF optical pick-up, a high- precision mold was fabricated using micro-machining technology. Wafer scale micro mirror array was UV-molded using the mold and then the process was optimized experimentally. The surface flatness and roughness of UV-molded micro mirror array were measured by white light scanning interferomety system and analyzed the transcribing characteristics. Finally, the measured flatness of UV-molded micro mirror away for SFF optical pick-up, which was fabricated in the optimum processing condition, was less than 70nm.

Influence of Electrical Conductivity of Dielectric on Machinability of W-EDM (방전액의 전도율이 와이어방전가공성에 미치는 영향)

  • Kim, Chang-Ho;Hur, Kwan-Do;Kwon, Taek-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.64-70
    • /
    • 2001
  • This work deals with the electrical conductivity of dielectric and cobalt percentage on output parameters such as metal removal rate and surface roughness value of sintered carbides cut by wire-electrical discharge machining (W-EDM). To obtain a precise workpiece with good quality, some extra repetitive finish cuts along the rough cutting contour are necessary. Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a higher metal removal rate as the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. To obtain a good surface equality without cracks, 4 finish-cuts were necessary by reducing the electrical energy and the offset value.

  • PDF

Monitoring of Grinding Force in Plunge Grinding Process (원통 플런지 연삭시 연삭력에 관한 실험적연구)

  • Park, Jong-Chan;Park, Cheol-Woo;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece

Grinding Wheel Life in Surface Grinding (평면연삭에서의 연삭수명 평가)

  • Choi, S.S.;Koo, Y.;Heo, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel gram affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, the grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the W A and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

  • PDF

A Study on the Micro Hole Drilling Characteristics of Machinable Ceramics (머시너블 세라믹스의 마이크로 홀 가공특성에 관한 연구)

  • 김동우;조명우;조원승;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.597-602
    • /
    • 2002
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining mechanism is characterized by cracking and brittle fracture. In this paper, to give good machinability to the ceramics, BN powders are added to Si$_3$N$_4$ by volume of 20, 25 and 30%. And the machiniability of the produced ceramics are tested using micro drilling system. Through required experimental works, it is shown that the micro drilling machinability is varied along with the volumetric percentage of BN powders. Also, it is verified that the obtained results can be used to develop new machinable ceramics of good material properties and machinability.

  • PDF

A Study on machining characteristics of the Electropolishing of Aluminum alloy (알루미늄 합금의 전해연마 가공특성에 관한 연구)

  • 이은상;김창근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • Electropolishing is the electrolytic removal of metal in a highly ionic solution by means of an electrical potential and current. It is normally used to remove a very thin layer of material on the surface of a metal part or component. Electropolishing is able to enhance the material properties of a workpiece and to change its physical dimensions. Also, It is suitable for the polishing of both complex shapes and hardened materials, which are difficult to machine mechanically. therefore, the aim of the present study is to investigate the characteristic of Electropolishing A12024 in terms of current density, polishing time and electrode gap, etc.

Development of a Fault-tolerant Intelligent Monitoring and Control System in Machining (절삭공정에서 Fault-tolerance 기능을 갖는 지능형 감시 및 제어시스템의 개발)

  • Choi, Gi-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.470-476
    • /
    • 1997
  • The dynamic characteristics of industrial processes frequently cause an abnormal situation which is undesirable in terms of the productivity and the safety of workers. The goal of fault-tolerance is to continue performing certain activities even after the failure of some system cononents. A fault-tolerant intelligent monitoring and control system which is robust under disturbances is proposed in this paper. Specifically, the fault-tolerant monitoring scheme proposed consists of two process models and the inference module to preserve such a robustness. The results of turning experiments demonstrate the effectiveness of the fault-tolerant scheme in the presence of built-up edge.

Design of High Speed Machine Tool Spindle Regarding Vibration Characteristics (진동특성을 고려한 공작기계 초고속 주축 설계)

  • 김종관;박보용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.99-103
    • /
    • 1991
  • 본 논고에서는 Radial 및 Axial 하중을 동시에 받을 수 있고, 예압에 의해 주축강성을 증대시킬수 있으며, Ball수의 증가로 부하능력을 향상시킨 초정 밀.초고속용 Angular ball bearing을 조합 사용하고, 고속회전에 지금까지 개 발된 ball bearing 윤활방법 중 가장 효과적인 간헐적인 oil 공급과 air 압력 으로, 계속 ball을 냉각, 윤활시켜주는 air oil 윤활법의 채용과, 국내 공작기 계 제조회사들이 주로 사용하는 일본 FAMUC AC Spindle motor(FAMUC-H type : 8000-15000rpm)를 사용해서 초고속 주축의 최적 설계조건을 제시하기 위한 기초연구 단계로 MT40-12000rpm 급의 Machining center용 Cartridge type의 Spindle unit개발을 통해서 주축설계에 따른 문제점과 연구용 주축제작의 생산 기술적 문제점 및 진동특성을 검토 하고자 한다.

  • PDF