• 제목/요약/키워드: Machining Test

검색결과 379건 처리시간 0.023초

밀리미터파 다중개구각 혼안테나 구현 (Implementation of A Millimeter-Wave Multiflare-Angle Horn Antenna)

  • 오경현;김지형;양승식;신상진;조영호;이병열;안병철
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.36-41
    • /
    • 2018
  • 본 논문에서는 밀리미터파(W 대역) 다중개구각 혼안테나를 제안하였다. 제안된 안테나는 전계면 및 자계면 빔폭이 동일한 다중모드 이중편파 정사각형 혼으로서 다중모드 생성부, 4개의 정사각형 도파관 여기부, 합패턴 형성을 위한 직교모드 변환기와 전력결합기로 구성된다. 제작이 용이하도록 안테나 구조를 설계하고, 층별 기계가공과 확산접합 기법을 적용하여 ${\pm}0.02mm$ 오차 이내로 제작하였다. 회로망분석기와 원전계 측정시설을 이용하여 제작된 안테나의 입력 반사계수와 방사패턴을 측정하였다. 측정 결과, 제안한 안테나는 중심 주파수를 기준으로 1 GHz 이내에서 17.7~18.3 dBi의 이득, $25.2{\sim}28.5^{\circ}$의 빔폭, 1.02~1.75의 입력 VSWR 특성을 가짐을 확인하였다.

연소시험에서 산소와 연료 비에 따른 탄화규소로 코팅된 탄소/ 탄소 복합재의 삭마 메커니즘 (Ablative Mechanism of SiC Coated Carbon/carbon Composites with Ratio of Oxygen to Fuel at Combusion Test)

  • 장은희;김정백;주혁종
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.227-233
    • /
    • 2007
  • 탄소/탄소 복합재는 우수한 열충격 저항성, 낮은 밀도뿐만 아니라, 초고온에서도 높은 강성과 강도를 가지는 독특한 소재이다. 그러나, 탄소/탄소 복합재의 적용에 있어서 심각한 결함이 있는데, 높은 온도에서 산화되는 환경에서는 취약한 산화 저항을 나타낸다는 것이다. 탄화규소 코팅은 탄소재의 산화를 보호하는데 이용된다. 본 연구에서는 4방향성 탄소/탄소 복합재의 삭마 거동을 시험하기 위해 액체연료 로켓 엔진을 사용하여 연소시험을 하였다. 탄소/탄소 복합재는 기지 전구체로 석탄 핏치를 사용하였고, $2300^{\circ}C$에서 열처리 하였다. 고밀도화 과정을 반복하여 시편의 밀도는 $1.903g/cm^3$에 달했다. 4방향성 탄소/탄소 복합재를 노즐 형태로 가공한 후, 산화 저항성을 개선하기 위하여 pack-cementation 방법으로 노즐 표면에 탄화규소를 코팅하였다. 탄화규소로 코팅된 노즐의 삭마 특성은 연료와 산소의 비율에 따라 측정하였다. 또한 연소시험 후 노즐의 삭마된 현상은 주사전자현미경으로 관찰하고, 삭마 메커니즘을 논의하였다.

염산테트라싸이클린의 적용시간에 따른 임플란트 표면변화에 관한 주사전자현미경적 연구 (Scanning Electron Microscopic Study of the Effect of Tetracycline-HCl on the Change of Implant Surface Microstructure according to Application Time)

  • 김우영;이만섭;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.523-537
    • /
    • 2002
  • The present study was performed to evaluate the effect of tetracycline - HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used. Implant surface was rubbed with 5Omg/ml tetracycline - HCl solution for ${\frac}{1}{2}$ min., 1 min., $1{\frac}{1}{2}$ min., 2 min., and 3min. respectively in the test group and with no conditioning in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. subsequently, the acid-etching process crated the micro roughness, which thus was superimposed on the macro roughness. 3. In the SLA surfaces, irrespective of the application time of 50mg/ml tetracycline-HCl solution, in general, test specimens were similar to control. 4. In the $TiO_2blasted$ surfaces the control specimen showed the rough surface with small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline-HCl solution was lessened and the flattened areas were wider relative to the application time of tetracycline - HCl solution. In conclusion, pure titanium machined surfaces and SLA surfaces weren't changed irrespective of the application time of tetracycline-HCl solution. And the $TiO_2blasted$ surfaces conditioned with tetracycline - HCl solution began to be changed from $1{\frac}{1}{2}$ min. This results are expected to be applied to the regenerative procedures for peri-implantitis treatment.

표면처리 시간에 따른 임플란트 미세구조의 변화;SLA와 TB 표면 임플란트 (Microstructural Change of Implant Surface conditioned with Tetracycline-HCI;SLA and TB surface implant)

  • 우정아;허익;권영혁;박준봉;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.921-937
    • /
    • 2005
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline- HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml tetracycline - HCl solution for $\frac{1}{2}$ min., 1min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}min.$ respectively in the test group and with no treatment in the control group. The sponge was soaked in every 30 seconds. Then, the specimens were processed for scanning electron microscopic observation. Based upon the analysis of photographs by three dentists who are not related with this study, the results were obtained as follows; 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml tetracycline - HCl solution, in general, test specimens were similar to control. 3. In the $TiO_2blasted$ surfaces, the control specimen showed the rough surface With small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline - HCl solution was lessened and the flattened areas got wider after 1 minute.

저자기 모멘트용 표준시료 제작 및 성능평가 (Manufacture and Evaluation of Reference Samples for Low Magnetic Moment)

  • 박일우;홍영식;김영미;윤혜온;이경재;조성학
    • 한국자기학회지
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 최근 발전하는 초박막 자기 시료의 정확한 자기 모멘트 측정을 위하여 저자기 모멘트 표준 시료를 제작하였다. 정밀한 저자기 모멘트 표준시료를 제작하기 위해서 자력계를 미리 자기잡음으로부터 차폐시켰고, 시료준비과정에서 강자성 불순물을 고려한 시료의 순도, 절단 방법, 시료의 모양과 두께 등을 고려하였다. 본 연구에서는 SQUID 자력계를 이용한 자기 모멘트 측정에 적합하게 $4mm{\times}6mm$ 면적을 갖는 Al, Ti과 W로 된 판상형 시료 3 개를 준비하였다. Pd 금속의 경우는 이미 잘 보정된 실린더형 시료를 사용하였다. 준비된 세 개의 판상형 시료의 경우 50,000 Oe 이내의 자기장영역에서 자기이력현상이 관측되지 않았고 모두 양호한 선형성을 보였다. 290K에서 310K까지의 온도영역에서 Ti, Al, W의 자기모멘트 값의 변화는 각각 0.7%, 1.5%, 0.1% 이내로 작았다. 본 연구에서 준비된 각각의 시편에 대해 자기모멘트 값을 결정하였으며, round robin test를 통하여 측정값의 신뢰도를 확인하였다. 그 결과 본 연구에서 제작한 표준시료는 저자기 모멘트 측정에 편리하고 적합하게 활용될 수 있음을 알 수 있었다.

선삭에 있어서의 피복, 비피복팁 및 방진장치가 절삭성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Machinability Influenced by Coated and Uncoated Tips, and Damping Device in Turning)

  • 남준우
    • 한국정밀공학회지
    • /
    • 제3권2호
    • /
    • pp.62-75
    • /
    • 1986
  • An experimental investigation of the machining characteristics such as cutt- ing resistance, surface roughness and tool wear in turning the test pieces of SM45C steel with both coated and uncoated carbide tool tips under various cutting conditions was conducted. Also a specially designed simple vibration damping device was experimentally evaluated for its effectiveness on machined surface roughness and a vibration test was conducted to confirm its ability to reduce the amplitude. Based on these tests finding, the following conclusions are made; 1. The cutting resistance($\textrm{p}_{1}$) increases as the depth of cut(d) increases at fixed feed rate(f) over the cutting speed(v) range of 43-226 m/min and p decreses about 18% average when V is increased for fixed d and f. At V= 226m/min, $\textrm{p}_{1}$/for A, C tips are about the same level but $\textrm{p}_{1}$ for B tip is 15% less than A, C tips. 2. The specific cutting resistance(Ks) at V=226 m/min was derived for A, B, C tips respectively and the value of Ks for B rip is about 20% less than A, C tips. 3. The surface roughness(Ra) improves significantly as the cutting speed(V) is increased and this effect was greater when V>100 m/min. On the other hand, Ra deteriorates as the feed rate(f) is increased and this trend was accelerated when f>0.3 mm/rev. With regard to the difference of Ra values among A, B, C tips, at V=226m/min, d=0.4mm, and f=0.31-0.61mm/rev, Ra values for B.C tips are about 17% less than tip A. 4. The experimental tool wear equations were derived for A, B, C tips and from these equations, the tool life($\textrm{T}_{\textrm{L}}$) baced on the I.S.O. criteria was calculated to be $\textrm{T}_{\textrm{L}}$<$\textrm{T}_{\textrm{LB}}$<$\textrm{T}_{\textrm{LC}}$ for both flank wear($\textrm{V}_{\textrm{B}}$) and boundary wear($\textrm{V}_{\textrm{N}}$). Hence, the coated tips are superior to the uncoated tip and tip C is considered to be the best. 5. The cutting resistance may be slightly reduced and the surface rounghness improved when the damper is used especially when V>100 m/min. Therefore this damping device is considered to be effective and practical. The experimental surface roughness equations were also derived. Based on the vibration test, it is established that the surface roughness improvement was the result of amplitude reduction made possible by the damper.

  • PDF

하이브리드 Ti2AlC 세라믹 소결체의 재료특성 및 Micro-EDM 유용성 연구 (Micro-EDM Feasibility and Material Properties of Hybrid Ti2AlC Ceramic Bulk Materials)

  • 정국현;김광호;강명창
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.301-306
    • /
    • 2014
  • Titanium alloys are extensively used in high-temperature applications due to their excellent high strength and corrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machinability test of hybrid $Ti_2AlC$ ceramic bulk materials were systematically examined. The bulk samples mainly consisted of $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Random orientation and good crystallization of the $Ti_2AlC$ was observed at $1100^{\circ}C$ for 10 min under SPS sintering conditions. Scanning electron microscopy results indicated a homogeneous distribution and nano-laminated structure of $Ti_2AlC$ MAX phase. The hardness and electrical conductivity of $Ti_2AlC$ were higher than that of Ti 6242 alloy at sintering temperature of $1000^{\circ}C{\sim}1100^{\circ}C$. Consequently, the machinability of the hybrid $Ti_2AlC$ bulk materials is better than that of the Ti 6242 alloy for micro-EDM process of micro-hole shape workpiece.

대형 Digital TV용 Display Unit의 강성 측정 (Elastic Modulus Measurement of a Large Size Digital TV Display Unit)

  • 김창희;문성인;최재붕;김영진;이정권;구자춘
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.115-122
    • /
    • 2005
  • As the digital TV markets rapidly growing, many manufacturers introduce large size flat screen TV units. There are two different display types available to large size models which are plasma and TFT-LCD. Since both are constructed with thin large panels that are mostly fragile to even moderate mechanical shock inputs. Some large size panels are severely resonated by the acoustic sound generated TV which deteriorates video quality. Recognizing the potential problems of large displays, accurate measurement of the panels is to be an essential task for the reliable design. Measurement of mechanical properties of a thin large crystallized panel such as TFT-LCD display with traditional material testing equipments is challenging. Since TFT-LCDs are constructed with combination of brittle glass panels, polymer sheets, and liquid crystal, their properties are not only anisotropic but also usually non-linear. Accurate measurement of the properties often requires very expensive facilities. Especially when the size of the test sample is as large as 40-inch or wider, direct measurement cost is prohibitive. Even worse, machining of the large TFT-LCD to make a smaller size specimen that could be fit into a material tester is not possible because of liquid crystal leakage. A new method fer the measurement of elastic modulus of large TFT-LCD panel is presented in this article. The suggested method provides a simple, economic, and user-friendly way fer measuring the elastic modulus of large panels with considerable level of accuracy.

Edge Detecting Algorithm을 이용한 OLED 보호 필름의 Real Time Inspection에 대한 연구 (A study on real time inspection of OLED protective film using edge detecting algorithm)

  • 한주석;한봉석;한유진;최두선;김태민;고강호;박정래;임동욱
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.14-20
    • /
    • 2020
  • In OLED panel production process, it is necessary to cut a part of protective film as a preprocess for lighting inspection. The current method is to recognize only the fiducial mark of the cut-out panel. Bare Glass Cutting does not compensate for machining cumulative tolerances. Even though process defects still occur, it is necessary to develop technology to solve this problem because only the Align Mark of the panel that has already been cut is used as the reference point for alignment. There is a lot of defective lighting during panel lighting test because the correct protective film is not cut on the panel power and signal application pad position. In laser cutting process to remove the polarizing film / protective film / TSP film of OLED panel, laser processing is not performed immediately after the panel alignment based on the alignment mark only. Therefore, in this paper, we performed real time inspection which minimizes the mechanism tolerance by correcting the laser cutting path of the protective film in real time using Machine Vision. We have studied calibration algorithm of Vision Software coordinate system and real image coordinate system to minimize inspection resolution and position detection error and edge detection algorithm to accurately measure edge of panel.

A study on the machining accuracy of dental digital method focusing on dental inlay

  • Bae, Eun-Jeong;Jeong, Il-Do;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권4호
    • /
    • pp.321-327
    • /
    • 2018
  • PURPOSE. The purpose of this study was to compare the cutting method and the lamination method to investigate whether the CAD data of the proposed inlay shape are machined correctly. MATERIALS AND METHODS. The Mesial-Occlusal shape of the inlay was modeled by changing the stereolithography (STL). Each group used SLS (metal powder) or SLA (photocurable resin) in the additive method, and wax or zirconia in the subtractive method (n=10 per group, total n=40). Three-dimensional (3D) analysis program (Geomagic Control X inspection software; 3D systems) was used for the alignment and analysis. The root mean square (RMS) in the 2D plane state was measured within $50{\mu}m$ radius of eight comparison measuring points (CMP). Differences were analyzed using one-way analysis of variance and post-hoc Tukey's test were used (${\alpha}=.05$). RESULTS. There was a significant difference in RMS only in SLA and SLS of 2D section (P<.05). In CMP mean, CMP 4 ($-5.3{\pm}46.7{\mu}m$) had a value closest to 0, while CMP 6 ($20.1{\pm}42.4{\mu}m$) and CMP 1 ($-89.2{\pm}61.4{\mu}m$) had the greatest positive value and the greatest negative value, respectively. CONCLUSION. Since the errors obtained from the study do not exceed the clinically acceptable values, the lamination method and the cutting method can be used clinically.