• Title/Summary/Keyword: Machining Parameters

Search Result 463, Processing Time 0.024 seconds

Selection of Machining Parameters of Electric Discharge Wire Cut Using 2-Step Neuro-estimation (2단계 신경망 추정에 의한 와이어 컷 방전 가공 조건 선정)

  • Lee, Keon-Beom;Ju, Sang-Yoon;Wang, Gi-Nam
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.125-132
    • /
    • 1997
  • We proposed a 2-step neural network approach for estimating machining parameters of electric discharge wire cut. The first step net, which is described as a backward neuro-estimation, is designed for estimating coarse cutting parameters while the second phase net, as a polishing forward neuro-estimation, is utilized for determining fine parameters. Sequential estimation procedure, based on backward and forward net, is performed using the net's approximation capability which is M to 1 and 1 to M mapping property. Experimental results an given to evaluate the accuracy of the proposed 2-step neuro-estimation.

  • PDF

Development of Geometry Design S/W using Analysis on Machining Characterization considering EndMill Geometry (엔드밀 형상에 따른 가공특성 분석을 이용한 형상설계 S/W 개발)

  • 한창규;고성림;유중학;서천석;김경배
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.111-117
    • /
    • 2004
  • The tool geometry parameters and cutting process have complex relationships. Until now, various cutting test were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process. In high speed machining. Using various tools with different geometry, relationships between tool geometry parameter (rake angle, clearance angle, length of cutter) and cutting process (cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining and developed tool geometry design S/W.

  • PDF

A Study on Damaged Layer Characteristics according to Cutting Speed in End-milling (엔드밀 가공시 가공속도에 따른 가공변질층 특성 연구)

  • 황인옥;이종환;김전하;강명창;김정석;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.778-781
    • /
    • 2004
  • As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.

  • PDF

A Study on Surface Roughness of Al alloy 7075 to Cutting depth in High-speed Machining (고속가공의 절삭 깊이에 따른 알루미늄 합금 7075의 표면 거칠기에 대한 연구)

  • Park, Eun-sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.29-35
    • /
    • 2010
  • Recently the industry high-speed machining has been applied to the automotive, aircraft, electronics parts machining because the effect of cost savings, machining time reduction and productivity improvement. In this study recently the aircraft structural aluminum alloy 7075 used in cutting the ball end-mill on the surface roughness terms most affect the parameters of the spindle speed and feed rate on the surface roughness of the work-piece according to the cutting depth is to investigate. Cutting depth at 0.3 mm has the lowest surface roughness.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining (I)

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2003
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors and effectiveness in machining process. The cutting fluid improves the productivity through cooling, lubricating effects, however its environmental impact also increases according to the cutting fluid usage. The primary mechanism in this study is the spin-of motion of cutting fluids away from the rotating workpiece. In this study some machining parameters are adopted to analyze the productivity as well as environmental impact. This study provides the criteria for the resonable cutting fluid usage quantitatively to develop the environmentally conscious machining process.

Study on the Design of End Mill Geometry for the High Speed Machining (고속 가공용 엔드밀의 형상설계에 관한 연구)

  • 이상규;배승민;고성림;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.67-70
    • /
    • 2001
  • The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of end mill for the purpose of high speed machining, due to the insufficient knowledge about cutting process in high speed machining. Using various tools with different geometry, relationships between tool geometry parameter(rake angle, clearance angle, length of cutter) and cutting process(cutting force, surface accuracy, surface roughness) have been studied. Acquired data can be used to design optimal tool for high speed machining

  • PDF

A Study on the Design of Endmill Geometry in High Speed Machining (고속가공용 엔드밀의 형상설계에 관한 연구(2))

  • 고성림;배승민;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.19-22
    • /
    • 1997
  • The objective of this research is to use an analytical and experimental approach to develop optimal tool geometry for high speed machining. The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of endmill for the purpose of high speed machining, dut to the insufficient knowledge about process in high speed machining. In order to improve the cutting ability of endmill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force and wear test and surface roughness test from optimized and conventional cutter with the same cutting condition. Using various tools with different geometry, relationships between the tool geometry parameter, rake angle, clearance angle, lengh of cutter have been stuied.

  • PDF

Feedrate Optimization in the Ball Endmilling Process Considering Shape Features (볼 엔드밀 가공시 형상특징을 고려한 이송속도의 최적화에 관한 연구)

  • Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.257-265
    • /
    • 1996
  • When machining of a free-form surface with a ball endmill it is very important to select proper cutting conditions considering the geometrical shape of a workpiece to make the production more effective and reduce the machining time. Even though the same cutting conditions and materials are used, the cutting system of different geometry part machining shows the different static/dynamic characteristics. In this study, through various cutting experiments, we can construct the data base of stable cutting conditions for the machining of a Zine Alloy. We can get some relational plots between the optimal feedrates and classified shape features and parameters. On the basis of these results, we can develop the feedrate optimization program OptiCode. The developed program make it possible to reduce the cutting time and increase the machining accuracies.

  • PDF

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System (통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계)

  • 장동영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF