• Title/Summary/Keyword: Machining Parameter

Search Result 173, Processing Time 0.026 seconds

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

Determination of ECM parameter Base on surface Roughness for Ni base Heat Resistant Alloy (Ni기 내열합금의 표면조도에 의한 전해가공조건의 설정)

  • 이상준;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.256-262
    • /
    • 1999
  • By development of heat resistant alloy, there are much improvement of gas turbine engines. But heat resistant alloy has difficulty of machining. therefore, ECM (Electrochemical Machining) is used for Machining of 3 dimensional curved surface of Ni-base alloy. The purpose of this paper is to investigate ECM parameters that make tile good surface for Ni-base alloy blade. For this purpose, we have been investigated that center line average surface roughness(R$\sub$a/), average R$\sub$a/, Maximum R$\sub$a/ and Standard deviation of R$\sub$a/ for measuring positions is influenced on ECM parameters such as electrolyte types, dwell time, electrolyte pressure and sort of electrolyte for Inconel 718 and Waspaloy.

  • PDF

Parameter Selection for the Milling of Thin Wall (얇은 벽면의 밀링가공을 위한 절삭 파라미터의 선정)

  • Jung, Jong-Yun;Cui, Heng-Bo;Moon, Dug-Hee;Lee, Choon-Man
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • 재료의 중량과 강도는 기계부품 특히 항공기의 부품에 중요한 요소가 되므로 가볍고 강인한 열처리 강화 알루미늄이나 티타늄 등이 많이 사용된다. 그러나 알루미늄은 용융점이 낮기 때문에 기계 가공 시 발생되는 열에 의해 부품이 얇고 길수록 쉽게 변형된다. 본 연구는 end milling 가공에서 최적의 절삭 parameter를 선정하여 열 변형을 최소화한다. 밀링 가공의 절삭속도, 이송속도, 절삭 깊이를 실험 인자로 정하여 다구찌 방법으로 실험을 계획하고 얇은 시편을 절삭하여 특성을 측정한다. 결과를 분산분석 (ANOVA) 과 signal to noise 비를 (SNR) 분석하여 최소 열 변형의 절삭 parameter를 찾는다. 실험의 data를 SQL database 프로그램화하여 다양한 절삭 환경에서 최소 열 변형과 최소 표면거칠기의 parameter를 찾을 수 있도록 하였다.

Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data

  • Tseng, Tzu-Liang Bill;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-139
    • /
    • 2014
  • This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE) with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC). Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mi-tutoyo coordinate measuring machine (CMM) on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.

A Study on the Optimal Cutting Depth upon Surface Roughness of Al Alloy 7075 in High-speed Machining (알루미늄 합금 7075의 표면 거칠기에 미치는 고속가공의 최적 절삭 깊이에 관한 연구)

  • Bae, Myung-Whan;Park, Hyeong-Yeol;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.74-81
    • /
    • 2013
  • The high-speed machining in the manufacturing industry field has been widely applied for parts of vehicles, aircraft, ships, electronics, etc., recently, because the effect of cost savings for shortening processing time and improving productivity is great. The purpose in this study is to investigate the effect of cutting depth on the surface roughness of workpiece with the spindle rotational speed and feed rate of high-speed machines as a parameter to find the optimal depth in the finishing for ball end mill of the aluminum alloy 7075 which is used much in aircraft parts. When the cutting depth for the respective feed rate and spindle rotational speed is varied from 0.1 mm to 0.7 mm at intervals of 0.2 mm in the wet finishing of the aluminum alloy 7075 by the insoluble cutting oils and high-speed machining used in the rough machining of previous study, the surface roughness values and the cutting temperature are measured. In addition, the cutting surface shapes of test specimens are observed by optical microscope and compared with respectively. It is found that the surface roughness values and the temperature generated during machining are increased as the feed rate and cutting depth are raised, but those are decreased as the spindle rotational speed is increased.

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Study on Prediction of Surface Roughness in Hard Turning by Cutting Force (절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구)

  • 이강재;양민양;하재용;이창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

The Characteristics of High-Speed Machining of Aluminum Wall Using End-Mill (엔드밀을 이용한 알루미늄 측벽 형상의 고속가공 특성)

  • 이우영;최성주;김흥배;손일복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.912-916
    • /
    • 2000
  • The term ‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry fur the machining of light alloys, notably aluminium. In recent you, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter fur end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-walled part of light alloy like Al(thinkness about 0.1mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining (미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, an artificial neural network based on simulated annealing was constructed. The mapping relationship between the parameters of micro-scaled flow channels electrochemical machining and the channel shape was established by training the samples. The depth and width of micro-scaled flow channels electrochemical machining on stainless steel surface were predicted, and the flow channels experiment was carried out with pulse power supply in NaNO3 solution to verify the established network model. The results show that the depth and width of the channel predicted by the simulated annealing artificial neural network with "4-7-2" structure are very close to the experimental values, and the error is less than 5.3%. The predicted and experimental data show that the etching degree in the process of channels electrochemical machining is closely related to voltage and current density. When the voltage is less than 5V, a "small island" is formed in the channel; When the voltage is greater than 40V, the lateral etching of the channel is relatively large, and the "dam" between the channels disappears. When the voltage is 25V, the machining morphology of the channel is the best.