• Title/Summary/Keyword: Machining Parameter

Search Result 173, Processing Time 0.025 seconds

Effects of the Grinding Conditions on the Machining Elasticity Parameter

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.62-67
    • /
    • 2003
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed, depth of cut, on this parameter experimentally, Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

Effects of the Surface Grinding Conditions on the Machining Elasticity Parameter (평면연삭조건이 가공탄성계수에 미치는 영향)

  • 임관혁;김강
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.26-32
    • /
    • 1998
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed and depth of cut, on this parameter experimentally. Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

  • PDF

Turning Parameter Optimization Based on Evolutionary Computation (선삭변수 최적화를 위한 진화 알고리듬 응용)

  • 이성열;곽규섭
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents a machining parameter selection approach using an evolutionary computation (EC). In order to perform a successful material cutting process, the engineer is to select suitable machining parameters. Until now, it has been mostly done by the handbook look-up or solving optimization equations which is inconvenient when not in handy. The main thrust of the paper is to provide a handy machining parameter selection approach. The EC is applied to rapidly find optimal machining parameters for the user\\`s specific machining conditions. The EC is basically a combination of genetic a1gorithm and microcanonical stochastic simulated annealing method. The approach is described in detail with an application example. The paper concludes with a discussion on the potential of the proposed approach.

  • PDF

Analysis of the Machinability of a Precision Machining of Molds/Dies by Using Jig and 3-Axis M/C (3축 머시닝센터와 치구를 이용한 금형의 정밀가공시의 특성해석)

  • Kim, B.H.;Chu, C.N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 1995
  • In this paper, the inclined endmilling process with a 3-axis machining center using inclined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyze the cutting mechanism of a given endmill more accurately, the unification of the cutting mechanism model of 3-different- kind endmills is carried out by using a nose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp height superposing the cutter mark height and the conventional cusp height is advanced. And 3-D suface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition method was confirmed.

  • PDF

Determination of Machining Parameters Considering Current Density in Three Dimensional Electrical Discharge Machining (3차원 방전가공에서 전류밀도를 고려한 방전가공조건 결정)

  • 이건범;김정두;최병훈;송희덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.100-106
    • /
    • 1999
  • Owing to the complexity of electrical discharge machining (EDM) phenomenon, it is very difficult to determine optimal machining parameters fer improving machining performance. This paper proposes a methodology for determining optimal electrical discharge machining parameters, which is maintaining suitable current density for increasing productivity or improving surface roughness. Machining area is closely related on optimal machining parameters in electrical discharge machining process, so calculation of machining area is needed in order to determine optimal machining parameters. In this study machining area, which is corresponding to the machining position, is calculated from intersection curves between the tool surface and a horizontal plane.

  • PDF

A Study on the Mchining Elasticity Parameter in the Grinding Process (연삭공정에서의 가공탄성계수에 관한 연구)

  • Yim, G. H.;Kim, K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.3-7
    • /
    • 1995
  • Force generated during grinding process causes elastic defomation. The effect of this deforms a workpiecs. So grinding system is explainable using the concept of macining elasticity phenomenon. Machining elasticity is defined as ratio between the true depth of c ut, and an importnat factor to affect material removal mchanism and productivity. Generally, to produce accurate surface and dimensionally precise components operators depend on their experiences. Because of these, productivity is reduced and time is wasted. The objective of this reserch is to study the effect of grinding conditions, such as table speed, depth of cut on the machining elasticity parameter.

  • PDF

Study on the effects of endmill's shape on the machinabitity and the cutting time (엔드밀의 형상이 가공특성 및 절삭시간에 미치는 영향에 관한 연구)

  • 김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.52-57
    • /
    • 1993
  • In this study, the inclined endmilling process with a 3-axis machining center using inalined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyse the cutting mechanism of a given endmill more accurateky, the unification of the cutting mechanism model of 3-different-kind endmills is examined by using the mose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp heigh superposing the cutter mark height and the conventional cusp height is modified. And 3-D surface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition algorithm was confirmed.

  • PDF

The effect of coating wire on the performance of wire electrical discharge machining (코팅와이어가 와이어 방전가공 특성에 미치는 영향)

  • 임세환;김준현;김주현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

Optimum selection of machining parameters of Wire Electrical Discharge Machining using Taguchi method (다구찌 실험계획법을 이용한 와이어 방전가공의 최적 가공조건 선정)

  • 임세환;김주현;이위로;박주승
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.123-128
    • /
    • 2002
  • The machining parameters for the wire electrical discharge machining(WEDM), including no load voltage, pulse-on time, pulse-off time, wire tension, water flow rata offset etc. should be chosen properly so that a better performance can be obtained An optimum selection of machining parameters relies heavily on the operators technologies and experience. This study presents a method by means of Taguchi method to select optimal machining parameter combination for an cutting speed or surface roughness. Experimental results demonstrate that the machining models are appropriate and the derived machining parameters satisfy the real requirements in notice.

  • PDF