• 제목/요약/키워드: Machining Deformation

검색결과 230건 처리시간 0.039초

열처리 및 소성변형을 고려한 자동차 구동축 부품의 기계적 성질평가 (Estimation of mechanical properties of driving parts for automobile considering heat treatment and plastic deformation)

  • 이광오;박재웅;제진수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.260-263
    • /
    • 2004
  • Since Outerrace is one of the components of driving shaft for power train of automobile and transmits high torque, high strength and high toughness are necessary so forging process is adopted to manufacture such parts. Therefore, in order to improve strength and toughness, heat treatment is accomplished after plastic deformation(forging). Because Each component of driving shaft is mounted to automobile after a series of forging, machining and heat treatment, in order to evaluate mechanical properties of such components in use, plastic deformation and heat treatment must be considered. So, in this paper, tensile tests are performed with tensile specimens which have passed through a series of upsetting, machining and heat treatment to evaluate mechanical properties of such components.

  • PDF

머시닝센터에서 고정밀 가공을 위한 NC 기술 (NC Technology for High-Precision Machining in Machining Centers)

  • 정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

AFM 가공 모드 분석 및 AE 모니터링 (Characterization of AFM machining mode and Acoustic Emission monitoring)

  • 안병운;이성환
    • 한국정밀공학회지
    • /
    • 제25권10호
    • /
    • pp.41-47
    • /
    • 2008
  • This study aims to obtain machining characteristics during AFM (Atomic force Microscope) machining of silicon wafers and to monitor the machining states using acoustic emission. As in micro scale machining, two distinct regimes of deformation, i. e. ploughing regime and cutting regime were observed. First, the transition between the two regimes are investigated by analyzing the "pile-up" during machining. As far as in process monitoring is concerned, in the ploughing repime, no chips have been formed and related AE RMS values are relatively low, In the mean time, in the cutting regime, the RMS values are significantly higher than the ploughing regime, with apparent chip formation. From the results, we found out that the proposed scheme can be used for the monitoring of nanomachining, especially for the characterization of nanocutting mode transition.

텅스텐 와이어 초단 펄스 미세 전해가공 (Tungsten Wire Micro Electrochemical Machining with Ultra Short Pulses)

  • 신홍식;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.105-112
    • /
    • 2007
  • Tungsten wire micro electrochemical machining (W-wire micro ECM) with ultra-short pulses enables precise micro machining of metal. In wire micro ECM, platinum wire has been used because it is electrochemically stable. However, the micro metal wire with low strength is easily deformed by hydrogen bubbles which are generated during the machining. The wire deformation decreases the machining accuracy. To reduce the influence of hydrogen bubbles, in this paper, the use of tungsten wire was investigated. To improve machining accuracy, suitable pulse conditions which affect generation of bubbles were also investigated. The tungsten wire micro ECM can be applied to the fabrication of various shapes. Using this method, various micro-parts and shapes were fabricated.

FEM을 이용한 Micromachining용 Tool 및 Tool holder의 변형해석 (Deformation analysis of Tool and Tool holder for Micromachining by FEM)

  • 민경탁;장호수
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.87-92
    • /
    • 2010
  • Micromachining technology using a ultra-precision micromachining system is widely applied in the fields of optics, biotechnology and analytical chemistry, etc. specially in microfabrication of fresnel lens, light guide panels of TFT-LED and PDP ribs with micro-patterns, machining errors have an effect on the performance of those products. The deflection of tool and tool holder is known to be one of the very important factors that is due to machining errors in micromachining. The deflections of diamond tool and tool holder used in micro-grooving are analysed by FEM. We analysed by FEM. With an linearity valuation of FEM, deflection of tool and tool holder is calculated by using the data of cutting force which is acquired from micro-V groove machining experiments in micromachining system.

공구와 공작물의 상대적 변형량 예측을 위한 해석모델 개발에 관한 연구 (A Study on the Development of Analysis Model for Prediction of Relative Deformation between Cutting Tool and Workpiece)

  • 이문재;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.20-26
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.

엔드밀 작업에서 공구의 열변형에 관한 연구 (A Study on the Thermal Deformation of a Cutting Tool in End Milling)

  • 홍민성
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.25-29
    • /
    • 1999
  • Machining process introduces thermal deformation of a cutter which affects the surface finish of the workpieces. By measuring the temperature distribution f the cutter thermal stress and deformation of the cutter are simulated. In addition surface roughness of workpiece is simulated by the surface-shaping system. The result shows that thermal deformation deteriorates the surface roughness.

  • PDF

엔드밀 작업에서 공구의 열변형에 관한 연구 (A Study on the Thermal Deformation of a Cutting Tool in End Milling)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.97.2-101
    • /
    • 1998
  • Machining process introduces thermal deformation of a cutter, which affects the surface finish of the workpieces. By measuring the temperature distribution of the cutter, thermal stress and deformation of the cutter are simulated. In addition, surface roughness of workpiece is simulated by the surface-shaping system. The result shows that thermal deformation deteriorates the surface roughness.

  • PDF