• Title/Summary/Keyword: Machined surface layer

Search Result 82, Processing Time 0.022 seconds

The retrospective study of survival rate of implants with maxillary sinus floor elevation (상악동 거상술을 동반한 상악구치부에 식립된 임플란트 생존율에 대한 후향적 연구)

  • Kim, Beom-Jin;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.2
    • /
    • pp.108-118
    • /
    • 2010
  • Introduction: Maxillary posterior region, compared to the mandible or maxillary anterior region, has a thin cortical bone layer and is largely composed of cancellous bone, and therefore, it is often difficult to achieve primary stability. In such cases, sinus elevation with bone graft is necessary. Materials and Methods: In this research, 121 patients who had implant placement after bone graft were subjected to a follow-up study of 5 years from the moment of the initial surgery. The total survival rate, 5-year cumulative survival rate and the influence of the following factors on implant survival were evaluated; the condition of the patient (sex, age, general body condition), the site of implant placement, diameter and length of the implant, sinus elevation technique, closure method for osseous window, type of prosthesis and opposing teeth. Results: 1. The 5-year cumulative survival rate of total implants was 90.5%, there was no significant difference between sex, age, the site of implant placement, diameter and length of the implant, sinus elevation technique, and the type of opposing teeth. 2. Patients with diabetes mellitus < osteoporosis and smooth-surfaced machined group < hydroxyapatite (HA)-treated group and homogenous demineralized freeze dried allogenic bone (DFDB) bone graft only group had significantly lower survival rate. 3. With less than 4 mm of residual alveolar ridge height, lateral approach without closing the osseous window resulted in a significantly lower survival rate. 4. Restoration of a single implant showed a significantly lower survival rate, compared to cases where the superstructure was joined with several implants in the area. Conclusion: Patients with diabetes or osteoporosis need longer period of time for osseointegration compared to the normal, and the dentists must be prudent when choosing a surface treatment type and the bone graft material. Also, as the vertical dimension of the residual alveolar ridge can influence the result, staged implant placement should be considered when it seems difficult for the implant to gain primary stability from the residual bone with less than 4 mm of vertical dimension. It is recommended to obdurate the bone window and that the superstructure be connected with several impants in the peripheral area.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF