• Title/Summary/Keyword: MachineLearning

Search Result 5,654, Processing Time 0.035 seconds

A study on the use of a Business Intelligence system : the role of explanations (비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로)

  • Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.155-169
    • /
    • 2014
  • With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

A Study on Automatic Classification Model of Documents Based on Korean Standard Industrial Classification (한국표준산업분류를 기준으로 한 문서의 자동 분류 모델에 관한 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.221-241
    • /
    • 2018
  • As we enter the knowledge society, the importance of information as a new form of capital is being emphasized. The importance of information classification is also increasing for efficient management of digital information produced exponentially. In this study, we tried to automatically classify and provide tailored information that can help companies decide to make technology commercialization. Therefore, we propose a method to classify information based on Korea Standard Industry Classification (KSIC), which indicates the business characteristics of enterprises. The classification of information or documents has been largely based on machine learning, but there is not enough training data categorized on the basis of KSIC. Therefore, this study applied the method of calculating similarity between documents. Specifically, a method and a model for presenting the most appropriate KSIC code are proposed by collecting explanatory texts of each code of KSIC and calculating the similarity with the classification object document using the vector space model. The IPC data were collected and classified by KSIC. And then verified the methodology by comparing it with the KSIC-IPC concordance table provided by the Korean Intellectual Property Office. As a result of the verification, the highest agreement was obtained when the LT method, which is a kind of TF-IDF calculation formula, was applied. At this time, the degree of match of the first rank matching KSIC was 53% and the cumulative match of the fifth ranking was 76%. Through this, it can be confirmed that KSIC classification of technology, industry, and market information that SMEs need more quantitatively and objectively is possible. In addition, it is considered that the methods and results provided in this study can be used as a basic data to help the qualitative judgment of experts in creating a linkage table between heterogeneous classification systems.

Usefulness of Data Mining in Criminal Investigation (데이터 마이닝의 범죄수사 적용 가능성)

  • Kim, Joon-Woo;Sohn, Joong-Kweon;Lee, Sang-Han
    • Journal of forensic and investigative science
    • /
    • v.1 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • Data mining is an information extraction activity to discover hidden facts contained in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results. Typical applications include market segmentation, customer profiling, fraud detection, evaluation of retail promotions, and credit risk analysis. Law enforcement agencies deal with mass data to investigate the crime and its amount is increasing due to the development of processing the data by using computer. Now new challenge to discover knowledge in that data is confronted to us. It can be applied in criminal investigation to find offenders by analysis of complex and relational data structures and free texts using their criminal records or statement texts. This study was aimed to evaluate possibile application of data mining and its limitation in practical criminal investigation. Clustering of the criminal cases will be possible in habitual crimes such as fraud and burglary when using data mining to identify the crime pattern. Neural network modelling, one of tools in data mining, can be applied to differentiating suspect's photograph or handwriting with that of convict or criminal profiling. A case study of in practical insurance fraud showed that data mining was useful in organized crimes such as gang, terrorism and money laundering. But the products of data mining in criminal investigation should be cautious for evaluating because data mining just offer a clue instead of conclusion. The legal regulation is needed to control the abuse of law enforcement agencies and to protect personal privacy or human rights.

  • PDF

Design Evaluation Model Based on Consumer Values: Three-step Approach from Product Attributes, Perceived Attributes, to Consumer Values (소비자 가치기반 디자인 평가 모형: 제품 속성, 인지 속성, 소비자 가치의 3단계 접근)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.57-76
    • /
    • 2017
  • Recently, consumer needs are diversifying as information technologies are evolving rapidly. A lot of IT devices such as smart phones and tablet PCs are launching following the trend of information technology. While IT devices focused on the technical advance and improvement a few years ago, the situation is changed now. There is no difference in functional aspects, so companies are trying to differentiate IT devices in terms of appearance design. Consumers also consider design as being a more important factor in the decision-making of smart phones. Smart phones have become a fashion items, revealing consumers' own characteristics and personality. As the design and appearance of the smartphone become important things, it is necessary to examine consumer values from the design and appearance of IT devices. Furthermore, it is crucial to clarify the mechanisms of consumers' design evaluation and develop the design evaluation model based on the mechanism. Since the influence of design gets continuously strong, various and many studies related to design were carried out. These studies can classify three main streams. The first stream focuses on the role of design from the perspective of marketing and communication. The second one is the studies to find out an effective and appealing design from the perspective of industrial design. The last one is to examine the consumer values created by a product design, which means consumers' perception or feeling when they look and feel it. These numerous studies somewhat have dealt with consumer values, but they do not include product attributes, or do not cover the whole process and mechanism from product attributes to consumer values. In this study, we try to develop the holistic design evaluation model based on consumer values based on three-step approach from product attributes, perceived attributes, to consumer values. Product attributes means the real and physical characteristics each smart phone has. They consist of bezel, length, width, thickness, weight and curvature. Perceived attributes are derived from consumers' perception on product attributes. We consider perceived size of device, perceived size of display, perceived thickness, perceived weight, perceived bezel (top - bottom / left - right side), perceived curvature of edge, perceived curvature of back side, gap of each part, perceived gloss and perceived screen ratio. They are factorized into six clusters named as 'Size,' 'Slimness,' 'No-Frame,' 'Roundness,' 'Screen Ratio,' and 'Looseness.' We conducted qualitative research to find out consumer values, which are categorized into two: look and feel values. We identified the values named as 'Silhouette,' 'Neatness,' 'Attractiveness,' 'Polishing,' 'Innovativeness,' 'Professionalism,' 'Intellectualness,' 'Individuality,' and 'Distinctiveness' in terms of look values. Also, we identifies 'Stability,' 'Comfortableness,' 'Grip,' 'Solidity,' 'Non-fragility,' and 'Smoothness' in terms of feel values. They are factorized into five key values: 'Sleek Value,' 'Professional Value,' 'Unique Value,' 'Comfortable Value,' and 'Solid Value.' Finally, we developed the holistic design evaluation model by analyzing each relationship from product attributes, perceived attributes, to consumer values. This study has several theoretical and practical contributions. First, we found consumer values in terms of design evaluation and implicit chain relationship from the objective and physical characteristics to the subjective and mental evaluation. That is, the model explains the mechanism of design evaluation in consumer minds. Second, we suggest a general design evaluation process from product attributes, perceived attributes to consumer values. It is an adaptable methodology not only smart phone but also other IT products. Practically, this model can support the decision-making when companies initiative new product development. It can help product designers focus on their capacities with limited resources. Moreover, if its model combined with machine learning collecting consumers' purchasing data, most preferred values, sales data, etc., it will be able to evolve intelligent design decision support system.

A Study on the Stereotype of ICT SMEs' R&D: Empirical Evidence from Korea (ICT 중소기업 R&D의 스테레오타입에 대한 연구 : 한국의 사례를 중심으로)

  • Jun, Seung-pyo;Choi, San;Jung, JaeOong
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.334-367
    • /
    • 2017
  • The ICT industry has been the main driver of Korea's economy with international competitiveness and is expected to be the growth engine that will revitalize the currently depressed economy. A broad range of different perspectives and opinions on the industry exist in Korea and overseas. Some of these are stereotypes, not all of which are based on objective evidence. Stereotypes refer to widely-held fixed opinions on a specific group and do not necessarily have negative connotations. However, they should not be viewed lightly because they can substantially affect decision-making process. In this regard, this study sought to review the stereotypes of ICT industry and identify objective and relative stereotypes. In the study, a decision-tree analysis was conducted on a survey result of 3,300 small and medium-sized enterprises (SMEs) in order to identify Korean ICT companies' characteristics that distinguish them from other technology companies. The decision-tree analysis, a data mining process based on machine learning, took a total of 291 variables into account in 10 subjects such as: corporate business in general, technology development activities as well as organization and people in technology development. Identifying the variables that distinguish ICT companies from other technology companies with the decision-tree analysis, the study then came up with a list of objective stereotypes of ICT companies. The findings from the stereotypes of Korean ICT companies are as follows. First, the companies are in need of technology policies that help R&D planning and market penetration. Second, policies must better support the companies working to sell new products or explore new business. Third, the companies need policies that support secure protection of development outcomes and proper management of IP rights. Fourth, the administrative procedures related to governmental support for ICT companies' R&D projects must be simplified. It is hoped that the outcome of this study will provide meaningful guidance in establishment, implementation and evaluation of technology policies for ICT SMEs, particularly to policymakers or researchers in relevant government agencies who determine R&D policies for ICT SMEs.

A Comparative Study on the Possibility of Land Cover Classification of the Mosaic Images on the Korean Peninsula (한반도 모자이크 영상의 토지피복분류 활용 가능성 탐색을 위한 비교 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1319-1326
    • /
    • 2019
  • The KARI(Korea Aerospace Research Institute) operates the government satellite information application consultation to cope with ever-increasing demand for satellite images in the public sector, and carries out various support projects including the generation and provision of mosaic images on the Korean Peninsula every year to enhance user convenience and promote the use of satellite images. In particular, the government has wanted to increase the utilization of mosaic images on the Korean Peninsula and seek to classify and update mosaic images so that users can use them in their businesses easily. However, it is necessary to test and verify whether the classification results of the mosaic images can be utilized in the field since the original spectral information is distorted during pan-sharpening and color balancing, and there is a limitation that only R, G, and B bands are provided. Therefore, in this study, the reliability of the classification result of the mosaic image was compared to the result of KOMPSAT-3 image. The study found that the accuracy of the classification result of KOMPSAT-3 image was between 81~86% (overall accuracy is about 85%), while the accuracy of the classification result of mosaic image was between 69~72% (overall accuracy is about 72%). This phenomenon is interpreted not only because of the distortion of the original spectral information through pan-sharpening and mosaic processes, but also because NDVI and NDWI information were extracted from KOMPSAT-3 image rather than from the mosaic image, as only three color bands(R, G, B) were provided. Although it is deemed inadequate to distribute classification results extracted from mosaic images at present, it is believed that it will be necessary to explore ways to minimize the distortion of spectral information when making mosaic images and to develop classification techniques suitable for mosaic images as well as the provision of NIR band information. In addition, it is expected that the utilization of images with limited spectral information could be increased in the future if related research continues, such as the comparative analysis of classification results by geomorphological characteristics and the development of machine learning methods for image classification by objects of interest.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Assessment of climate change impact on aquatic ecology health indices in Han river basin using SWAT and random forest (SWAT 및 random forest를 이용한 기후변화에 따른 한강유역의 수생태계 건강성 지수 영향 평가)

  • Woo, So Young;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.863-874
    • /
    • 2018
  • The purpose of this study is to evaluate the future climate change impact on stream aquatic ecology health of Han River watershed ($34,148km^2$) using SWAT (Soil and Water Assessment Tool) and random forest. The 8 years (2008~2015) spring (April to June) Aquatic ecology Health Indices (AHI) such as Trophic Diatom Index (TDI), Benthic Macroinvertebrate Index (BMI) and Fish Assessment Index (FAI) scored (0~100) and graded (A~E) by NIER (National Institute of Environmental Research) were used. The 8 years NIER indices with the water quality (T-N, $NH_4$, $NO_3$, T-P, $PO_4$) showed that the deviation of AHI score is large when the concentration of water quality is low, and AHI score had negative correlation when the concentration is high. By using random forest, one of the Machine Learning techniques for classification analysis, the classification results for the 3 indices grade showed that all of precision, recall, and f1-score were above 0.81. The future SWAT hydrology and water quality results under HadGEM3-RA RCP 4.5 and 8.5 scenarios of Korea Meteorological Administration (KMA) showed that the future nitrogen-related water quality in watershed average increased up to 43.2% by the baseflow increase effect and the phosphorus-related water quality decreased up to 18.9% by the surface runoff decrease effect. The future FAI and BMI showed a little better Index grade while the future TDI showed a little worse index grade. We can infer that the future TDI is more sensitive to nitrogen-related water quality and the future FAI and BMI are responded to phosphorus-related water quality.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.