• Title/Summary/Keyword: MachineLearning

Search Result 5,657, Processing Time 0.03 seconds

Development of Artificial Intelligence-Based Remote-Sense Reflectance Prediction Model Using Long-Term GOCI Data (장기 GOCI 자료를 활용한 인공지능 기반 원격 반사도 예측 모델 개발)

  • Donguk Lee;Joo Hyung Ryu;Hyeong-Tae Jou;Geunho Kwak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1577-1589
    • /
    • 2023
  • Recently, the necessity of predicting changes for monitoring ocean is widely recognized. In this study, we performed a time series prediction of remote-sensing reflectance (Rrs), which can indicate changes in the ocean, using Geostationary Ocean Color Imager (GOCI) data. Using GOCI-I data, we trained a multi-scale Convolutional Long-Short-Term-Memory (ConvLSTM) which is proposed in this study. Validation was conducted using GOCI-II data acquired at different periods from GOCI-I. We compared model performance with the existing ConvLSTM models. The results showed that the proposed model, which considers both spatial and temporal features, outperformed other models in predicting temporal trends of Rrs. We checked the temporal trends of Rrs learned by the model through long-term prediction results. Consequently, we anticipate that it would be available in periodic change detection.

Development of Long-Term Hospitalization Prediction Model for Minor Automobile Accident Patients (자동차 사고 경상환자의 장기입원 예측 모델 개발)

  • DoegGyu Lee;DongHyun Nam;Sung-Phil Heo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.11-20
    • /
    • 2023
  • The cost of medical treatment for motor vehicle accidents is increasing every year. In this study, we created a model to predict long-term hospitalization(more than 18 days) among minor patients, which is the main item of increasing traffic accident medical expenses, using five algorithms such as decision tree, and analyzed the factors affecting long-term hospitalization. As a result, the accuracy of the prediction models ranged from 91.377 to 91.451, and there was no significant difference between each model, but the random forest and XGBoost models had the highest accuracy of 91.451. There were significant differences between models in the importance of explanatory variables, such as hospital location, name of disease, and type of hospital, between the long-stay and non-long-stay groups. Model validation was tested by comparing the average accuracy of each model cross-validated(10 times) on the training data with the accuracy of the validation data. To test of the explanatory variables, the chi-square test was used for categorical variables.

Application for Workout and Diet Assistant using Image Processing and Machine Learning Skills (영상처리 및 머신러닝 기술을 이용하는 운동 및 식단 보조 애플리케이션)

  • Chi-Ho Lee;Dong-Hyun Kim;Seung-Ho Choi;In-Woong Hwang;Kyung-Sook Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.83-88
    • /
    • 2023
  • In this paper, we developed a workout and diet assistance application to meet the growing demand for workout and dietary support services due to the increase in the home training population. The application analyzes the user's workout posture in real-time through the camera and guides the correct posture using guiding lines and voice feedback. It also classifies the foods included in the captured photos, estimates the amount of each food, and calculates and provides nutritional information such as calories. Nutritional information calculations are executed on the server, which then transmits the results back to the application. Once received, this data is presented visually to the user. Additionally, workout results and nutritional information are saved and organized by date for users to review.

Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review

  • Kuchalambal Agadi;Asimina Dominari;Sameer Saleem Tebha;Asma Mohammadi;Samina Zahid
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.632-641
    • /
    • 2023
  • Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.113-120
    • /
    • 2024
  • With the advancement of information and communication technology, we can easily generate various forms of data in our daily lives. To efficiently manage such a large amount of data, systematic classification into categories is essential. For effective search and navigation, data is organized into a tree-like hierarchical structure known as a category tree, which is commonly seen in news websites and Wikipedia. As a result, various techniques have been proposed to classify large volumes of documents into the terminal nodes of category trees. However, document classification methods using category trees face a problem: as the height of the tree increases, the number of terminal nodes multiplies exponentially, which increases the probability of misclassification and ultimately leads to a reduction in classification accuracy. Therefore, in this paper, we propose a new node expansion-based classification algorithm that satisfies the classification accuracy required by the application, while enabling detailed categorization. The proposed method uses a greedy approach to prioritize the expansion of nodes with high classification accuracy, thereby maximizing the overall classification accuracy of the category tree. Experimental results on real data show that the proposed technique provides improved performance over naive methods.

A Study on the i-YOLOX Architecture for Multiple Object Detection and Classification of Household Waste (생활 폐기물 다중 객체 검출과 분류를 위한 i-YOLOX 구조에 관한 연구)

  • Weiguang Wang;Kyung Kwon Jung;Taewon Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.135-142
    • /
    • 2023
  • In addressing the prominent issues of climate change, resource scarcity, and environmental pollution associated with household waste, extensive research has been conducted on intelligent waste classification methods. These efforts range from traditional classification algorithms to machine learning and neural networks. However, challenges persist in effectively classifying waste in diverse environments and conditions due to insufficient datasets, increased complexity in neural network architectures, and performance limitations for real-world applications. Therefore, this paper proposes i-YOLOX as a solution for rapid classification and improved accuracy. The proposed model is evaluated based on network parameters, detection speed, and accuracy. To achieve this, a dataset comprising 10,000 samples of household waste, spanning 17 waste categories, is created. The i-YOLOX architecture is constructed by introducing the Involution channel convolution operator and the Convolution Branch Attention Module (CBAM) into the YOLOX structure. A comparative analysis is conducted with the performance of the existing YOLO architecture. Experimental results demonstrate that i-YOLOX enhances the detection speed and accuracy of waste objects in complex scenes compared to conventional neural networks. This confirms the effectiveness of the proposed i-YOLOX architecture in the detection and classification of multiple household waste objects.