• Title/Summary/Keyword: MachineLearning

Search Result 5,657, Processing Time 0.037 seconds

Performance Enhancement of Speech Declipping using Clipping Detector (클리핑 감지기를 이용한 음성 신호 클리핑 제거의 성능 향상)

  • Eunmi Seo;Jeongchan Yu;Yujin Lim;Hochong Park
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.132-140
    • /
    • 2023
  • In this paper, we propose a method for performance enhancement of speech declipping using clipping detector. Clipping occurs when the input speech level exceeds the dynamic range of microphone, and it significantly degrades the speech quality. Recently, many methods for high-performance speech declipping based on machine learning have been developed. However, they often deteriorate the speech signal because of degradation in signal reconstruction process when the degree of clipping is not high. To solve this problem, we propose a new approach that combines the declipping network and clipping detector, which enables a selective declipping operation depending on the clipping level and provides high-quality speech in all clipping levels. We measured the declipping performance using various metrics and confirmed that the proposed method improves the average performance over all clipping levels, compared with the conventional methods, and greatly improves the performance when the clipping distortion is small.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

Research on Overseas Trends and Emerging Topics in Field of Library and Information Science (문헌정보학분야 해외 연구 동향 및 유망 주제 분석 연구)

  • Bon Jin Koo;Durk Hyun Chang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.71-96
    • /
    • 2023
  • This study aimed to investigate key research areas in the field of Library and Information Science (LIS) by analyzing trends and identifying emerging topics. To facilitate the research, a collection of 40,897 author keywords from 11,252 papers published in the past 30 years (1993-2022) in five journals was gathered. In addition, keyword analysis, as well as Principal Component Analysis (PCA) and correlation analysis were conducted, utilizing variables such as the number of articles, number of authors, ratio of co-authored papers, and cited counts. The findings of the study suggest that two topics are likely to develop as promising research areas in LIS in the future: machine learning/algorithm and research impact. Furthermore, it is anticipated that future research will focus on topics such as social media and big data, natural language processing, research trends, and research assessment, as they are expected to emerge as prominent areas of study.

A Study on the Application of Machine Learning for River T-N Prediction (하천 T-N 예측을 위한 머신러닝 적용 연구)

  • Gwang Min Ok;Su Han Nam;Young Do Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.201-201
    • /
    • 2023
  • 일반적으로 하천의 수질은 산업화, 인구증가 등으로 인해 여러 종류의 오염물질이 유입되어 악화된다. 수질 악화의 대표적인 현상은 부영양화이며 이를 일으키는 주요 원인 물질은 통상 영양염류라고 말하는 질소와 인으로 알려져 있다. T-N이 다량 수계로 유입되면 식물성 플랑크톤 등이 대량 번식하여 녹조 현상등 수질 악화를 발생시켜 관리가 필요하다. 현재 많은 수자원 관리 부서에서 모니터링 포인트를 설정하여 수질 변화를 관찰하고 있다. 기존의 T-N 분석방법은 (1) 자외선 흡광광도법 (2) 카드뮴 환원법 (3) 환원증류-킬달법등이 있다. 그러나 이러한 방법들은 실험실 기반의 정량적 분석으로 시간과 비용이 크게 소요되어 발생하는 문제에 대해 초기대응을 하기 힘들다. 따라서 T-N을 효과적으로 측정할 수 있는 방법이 필요하다. 국내에서는 수질자료를 통한 연관된 수질 인자를 찾아내어 머신러닝 알고리즘을 활용해 Chl-a 농도를 추정한 연구사례가 있다. 국외에서는 TN과 센서 측정 지표 간의 물리적, 화학적 관계를 기반으로 센서 감지의 적시성과 지능형 알고리즘의 정확도를 결합하여 실시간 총질소(TN) 측정 방법 연구 사례가 있다. 따라서 본 연구에서는 머신러닝을 활용하여 국내에 적합한 T-N 예측 모델을 만들고자한다. 본 연구에서는 센서기반으로 측정가능한 수질항목들과 T-N의 상관성 분석을 통해 주요 수질인자를 도출하였다. 도출된 인자와 Python 기반의 머신러닝을 활용하여 T-N을 추정하였다. 그 후, T-N 추정값과 실측값을 비교하여 머신러닝 성능을 평가하고 실제 적용 가능성에 대해서 검증하였다. 본 연구는 기존 T-N 측정에 소모되는 시간과 비용의 감소에 기여하고 이를 통해 앞으로 더 정확한 수질 예측이 가능해질 것으로 기대된다.

  • PDF

Long term discharge simulation using an Long Short-Term Memory(LSTM) and Multi Layer Perceptron(MLP) artificial neural networks: Forecasting on Oshipcheon watershed in Samcheok (장단기 메모리(LSTM) 및 다층퍼셉트론(MLP) 인공신경망 앙상블을 이용한 장기 강우유출모의: 삼척 오십천 유역을 대상으로)

  • Sung Wook An;Byng Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.206-206
    • /
    • 2023
  • 지구온난화로 인한 기후변화에 따라 평균강수량과 증발량이 증가하며 강우지역 집중화와 강우강도가 높아질 가능성이 크다. 우리나라의 경우 협소한 국토면적과 높은 인구밀도로 기후변동의 영향이 크기 때문에 한반도에 적합한 유역규모의 수자원 예측과 대응방안을 마련해야 한다. 이를 위한 수자원 관리를 위해서는 유역에서 강수량, 유출량, 증발량 등의 장기적인 자료가 필요하며 경험식, 물리적 강우-유출 모형 등이 사용되었고, 최근들어 연구의 확장성과 비 선형성 등을 고려하기 위해 딥러닝등 인공지능 기술들이 접목되고 있다. 본 연구에서는 ASOS(동해, 태백)와 AWS(삼척, 신기, 도계) 5곳의 관측소에서 2011년~2020년까지의 일 단위 기상관측자료를 수집하고 WAMIS에서 같은 기간의 오십천 하구 일 유출량 자료를 수집 후 5개 관측소를 기준으로Thiessen 면적비를 적용해 기상자료를 구축했으며 Angstrom & Hargreaves 공식으로 잠재증발산량 산정해 3개의 모델에 각각 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온), 일 강수량과 잠재증발산량, 일 강수량 - 잠재증발산량을 학습 후 관측 유출량과 비교결과 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온)로 학습한 모델성능이 가장 높아 최적 모델로 선정했으며 일, 월, 연 관측유출량 시계열과 비교했다. 또한 같은 학습자료를 사용해 다층 퍼셉트론(Multi Layer Perceptron, MLP) 앙상블 모델을 구축하여 수자원 분야에서의 인공지능 활용성을 평가했다.

  • PDF

Bias-correction of near-real-time multi-satellite precipitation products using machine learning (머신러닝 기반 준실시간 다중 위성 강수 자료 보정)

  • Sungho Jung;Xuan-Hien Le;Van-Giang Nguyen;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.280-280
    • /
    • 2023
  • 강수의 정확한 시·공간적 추정은 홍수 대응, 가뭄 관리, 수자원 계획 등 수문학적 모델링의 핵심 기술이다. 우주 기술의 발전으로 전지구 강수량 측정 프로젝트(Global Precipitation Measurement, GPM)가 시작됨에 따라 위성의 여러 센서를 이용하여 다양한 고해상도 강수량 자료가 생산되고 있으며, 기후변화로 인한 수재해의 빈도가 증가함에 따라 준실시간(Near-Real-Time) 위성 강수 자료의 활용성 및 중요성이 높아지고 있다. 하지만 준실시간 위성 강수 자료의 경우 빠른 지연시간(latency) 확보를 위해 관측 이후 최소한의 보정을 거쳐 제공되므로 상대적으로 강수 추정치의 불확실성이 높다. 이에 따라 본 연구에서는 앙상블 머신러닝 기반 수집된 위성 강수 자료들을 관측 자료와 병합하여 보정된 준실시간 강수량 자료를 생성하고자 한다. 모형의 입력에는 시단위 3가지 준실시간 위성 강수 자료(GSMaP_NRT, IMERG_Early, PERSIANN_CCS)와 방재기상관측 (AWS)의 온도, 습도, 강수량 지점 자료를 활용하였다. 지점 강수 자료의 경우 결측치를 고려하여 475개 관측소를 선정하였으며, 공간성을 고려한 랜덤 샘플링으로 375개소(약 80%)는 훈련 자료, 나머지 100개소(약 20%)는 검증 자료로 분리하였다. 모형의 정량적 평가 지표로는 KGE, MAE, RMSE이 사용되었으며, 정성적 평가 지표로 강수 분할표에 따라 POD, SR, BS 그리고 CSI를 사용하였다. 머신러닝 모형은 개별 원시 위성 강수 자료 및 IDW 기법보다 높은 정확도로 강수량을 추정하였으며 공간적으로 안정적인 결과를 나타내었다. 다만, 최대 강수량에서는 다소 과소추정되므로 이는 강수와 관련된 입력 변수의 개수 업데이트로 해결할 수 있을 것으로 판단된다. 따라서 불확실성이 높은 개별 준실시간 위성 자료들을 관측 자료와 병합하여 보정된 최적 강수 자료를 생성하는 머신러닝 기법은 돌발성 수재해에 실시간으로 대응 가능하며 홍수 예보에 신뢰도 높은 정량적인 강수량 추정치를 제공할 수 있다.

  • PDF

Imputation of missing precipitation data using machine learning algorithms (머신러닝 알고리즘을 이용한 결측 강우 데이터 추정에 관한 연구)

  • Heechan Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.320-320
    • /
    • 2023
  • 강우 데이터는 수문기상, 환경, 농업, 자연재해, 그리고 수자원 시스템 분야에서 가장 필수적인 기본 요소 중 하나이다. 또한 강우 데이터는 수문학적 분석에서 활용되는 필수 입력 자료 중 하나로 관측 데이터의 품질에 따라 수문 모형을 이용한 모의 결과물의 정확도가 결정된다고 할 수 있다. 따라서, 강우 관측소별로 강우 데이터의 품질을 어떻게 관리하느냐에 따라 수문 모형의 활용 범위 및 수자원 관리의 효율성이 결정될 수 있다. 강우의 시공간적 변동성은 수 많은 인자들과 직간접적으로 연계되어 있기 때문에 미계측 강우 자료에 대해 직접 관측이 아닌 수치 모형을 이용하여 강우의 발생과 강우량을 산정하는 것은 매우 복잡한 과제 중 하나이다. 현재 국내에서 운용되고 있는 강우 관측소의 경우에도 미계측 된 강우 데이터가 존재함으로써 강우 데이터의 활용에 제한이 생기는 경우가 있다. 따라서, 이러한 미계측 데이터의 추정 및 보완은 보다 효과적인 수재해 방지, 수자원 관리를 위한 필수 과제 중 하나이다. 일반적으로, 미계측 강우를 산정하기 위해서 Kriging, Thiessen, 등우선법, 그리고 역거리 관측법 등 다양한 수문학적 방법들이 적용되고 있다. 이러한 방법들은 산악효과나 강우 관측소의 분포 상태 등을 고려하지 못하기 때문에 측정하는 지역에 따라 강우 추정 오차가 커질 수 있다는 한계가 있다. 최근에는 데이터 관측 시스템과 빅데이터 기술의 발전과 활용 가능한 데이터의 양이 증가함에 따라 머신러닝을 활용한 사례가 증가하고 있다. 머신러닝은 데이터 사이의 관계를 기반으로 분류, 회귀, 그리고 예측 문제에 주로 사용되는 기법 중 하나이다. 따라서, 본 연구에서는 광주광역시 지역에 위치한 주요 강우 관측 지점들을 대상으로 미계측 된 시강우 데이터를 추정 및 복원하고자 한다. 여기서 데이터 추정 기술이란 미계측 강우의 발생 유무 및 강우량을 추정할 수 있는 기술을 의미한다. 이를 위해 대표적인 머신러닝 알고리즘인 인공신경망(Artificial Neural Network) 및 랜덤포레스트(Random Forest)를 적용하였다.

  • PDF