• Title/Summary/Keyword: MachineLearning

Search Result 5,654, Processing Time 0.043 seconds

COMPARATIVE ANALYSIS ON MACHINE LEARNING MODELS FOR PREDICTING KOSPI200 INDEX RETURNS

  • Gu, Bonsang;Song, Joonhyuk
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.211-226
    • /
    • 2017
  • In this paper, machine learning models employed in various fields are discussed and applied to KOSPI200 stock index return forecasting. The results of hyperparameter analysis of the machine learning models are also reported and practical methods for each model are presented. As a result of the analysis, Support Vector Machine and Artificial Neural Network showed a better performance than k-Nearest Neighbor and Random Forest.

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.

Machine Learning Frameworks for Automated Software Testing Tools : A Study

  • Kim, Jungho;Ryu, Joung Woo;Shin, Hyun-Jeong;Song, Jin-Hee
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2017
  • Increased use of software and complexity of software functions, as well as shortened software quality evaluation periods, have increased the importance and necessity for automation of software testing. Automating software testing by using machine learning not only minimizes errors in manual testing, but also allows a speedier evaluation. Research on machine learning in automated software testing has so far focused on solving special problems with algorithms, leading to difficulties for the software developers and testers, in applying machine learning to software testing automation. This paper, proposes a new machine learning framework for software testing automation through related studies. To maximize the performance of software testing, we analyzed and categorized the machine learning algorithms applicable to each software test phase, including the diverse data that can be used in the algorithms. We believe that our framework allows software developers or testers to choose a machine learning algorithm suitable for their purpose.

The Development of a Rainfall Correction Technique based on Machine Learning for Hydrological Applications (수문학적 활용을 위한 머신러닝 기반의 강우보정기술 개발)

  • Lee, Young-Mi;Ko, Chul-Min;Shin, Seong-Cheol;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.125-135
    • /
    • 2019
  • For the purposes of enhancing usability of Numerical Weather Prediction (NWP), the quantitative precipitation prediction scheme by machine learning has been proposed. In this study, heavy rainfall was corrected for by utilizing rainfall predictors from LENS and Radar from 2017 to 2018, as well as machine learning tools LightGBM and XGBoost. The results were analyzed using Mean Absolute Error (MAE), Normalized Peak Error (NPE), and Peak Timing Error (PTE) for rainfall corrected through machine learning. Machine learning results (i.e. using LightGBM and XGBoost) showed improvements in the overall correction of rainfall and maximum rainfall compared to LENS. For example, the MAE of case 5 was found to be 24.252 using LENS, 11.564 using LightGBM, and 11.693 using XGBoost, showing excellent error improvement in machine learning results. This rainfall correction technique can provide hydrologically meaningful rainfall information such as predictions of flooding. Future research on the interpretation of various hydrologic processes using machine learning is necessary.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

Network Traffic Measurement Analysis using Machine Learning

  • Hae-Duck Joshua Jeong
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2023
  • In recent times, an exponential increase in Internet traffic has been observed as a result of advancing development of the Internet of Things, mobile networks with sensors, and communication functions within various devices. Further, the COVID-19 pandemic has inevitably led to an explosion of social network traffic. Within this context, considerable attention has been drawn to research on network traffic analysis based on machine learning. In this paper, we design and develop a new machine learning framework for network traffic analysis whereby normal and abnormal traffic is distinguished from one another. To achieve this, we combine together well-known machine learning algorithms and network traffic analysis techniques. Using one of the most widely used datasets KDD CUP'99 in the Weka and Apache Spark environments, we compare and investigate results obtained from time series type analysis of various aspects including malicious codes, feature extraction, data formalization, network traffic measurement tool implementation. Experimental analysis showed that while both the logistic regression and the support vector machine algorithm were excellent for performance evaluation, among these, the logistic regression algorithm performs better. The quantitative analysis results of our proposed machine learning framework show that this approach is reliable and practical, and the performance of the proposed system and another paper is compared and analyzed. In addition, we determined that the framework developed in the Apache Spark environment exhibits a much faster processing speed in the Spark environment than in Weka as there are more datasets used to create and classify machine learning models.

Prediction of Weight of Spiral Molding Using Injection Molding Analysis and Machine Learning (사출성형 CAE와 머신러닝을 이용한 스파이럴 성형품의 중량 예측)

  • Bum-Soo Kim;Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2023
  • In this paper, we intend to predict the mass of the spiral using CAE and machine learning. First, We generated 125 data for the experiment through a complete factor design of 3 factors and 5 levels. Next, the data were derived by performing a molding analysis through CAE, and the machine learning process was performed using a machine learning tool. To select the optimal model among the models learned using the learning data, accuracy was evaluated using RMSE. The evaluation results confirmed that the Support Vector Machine had a good predictive performance. To evaluate the predictive performance of the predictive model, We randomly generated 10 non-overlapping data within the existing injection molding condition level. We compared the CAE and support vector machine results by applying random data. As a result, good performance was confirmed with a MAPE value of 0.48%.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

Analysis of Machine Learning Research Patterns from a Quality Management Perspective (품질경영 관점에서 머신러닝 연구 패턴 분석)

  • Ye-eun Kim;Ho Jun Song;Wan Seon Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.77-93
    • /
    • 2024
  • Purpose: The purpose of this study is to examine machine learning use cases in manufacturing companies from a digital quality management (DQM) perspective and to analyze and present machine learning research patterns from a quality management perspective. Methods: This study was conducted based on systematic literature review methodology. A comprehensive and systematic review was conducted on manufacturing papers covering the overall quality management process from 2015 to 2022. A total of 3 research questions were established according to the goal of the study, and a total of 5 literature selection criteria were set, based on which approximately 110 research papers were selected. Based on the selected papers, machine learning research patterns according to quality management were analyzed. Results: The results of this study are as follows. Among quality management activities, it can be seen that research on the use of machine learning technology is being most actively conducted in relation to quality defect analysis. It suggests that research on the use of NN-based algorithms is taking place most actively compared to other machine learning methods across quality management activities. Lastly, this study suggests that the unique characteristics of each machine learning algorithm should be considered for efficient and effective quality management in the manufacturing industry. Conclusion: This study is significant in that it presents machine learning research trends from an industrial perspective from a digital quality management perspective and lays the foundation for presenting optimal machine learning algorithms in future quality management activities.