• Title/Summary/Keyword: Machine-vision

Search Result 883, Processing Time 0.036 seconds

Development of Automatic Alignment Height and Cross-section Inspection System for Fiber Bragg Grating Embedded Field Assembly Connector (FBG Embedded 현장 조립형 커넥터의 자동 정렬 및 단면 자동 검사 시스템 개발)

  • Lee, Jung-Ho;Park, Chan-Hee;Yoon, Jae-Soon;Lee, Hee-Kwan;Kim, Cheol-Sang;Kim, Jae-Won;Kim, Kyung;Kim, Jae-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.94-101
    • /
    • 2014
  • Recently, in order to reduce the time required to replace an optical jumper cord, many researchers are using a field-installable connector and applying the ferrule polishing method, ferrule mechanical contact method, or ferrule fusion contact method. However, the process of arranging the length of the optical fiber, i.e., inserting the optical fiber into the ferrule by hand and checking its cross section, takes 60% of the time required for the entire process, which increases the overall cost. Therefore, in order to make this task more cost-effective, we will develop an automated inspection system with automatic cross-sectional arrangement of a field-installable connector. This system will be able to decrease the failure rate from 10% to 2% compared with the conventional method when cutting the optical fiber inserted into the ferrule. It will also improve the productivity by decreasing the test time by 28% compared with the conventional method. Our studies showed that it was possible to reduce the production costs and improve the quality of a field-installable connector, and we expect it to dominate the market.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

A Study on Hand Gesture Recognition with Low-Resolution Hand Images (저해상도 손 제스처 영상 인식에 대한 연구)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Recently, many human-friendly communication methods have been studied for human-machine interface(HMI) without using any physical devices. One of them is the vision-based gesture recognition that this paper deals with. In this paper, we define some gestures for interaction with objects in a predefined virtual world, and propose an efficient method to recognize them. For preprocessing, we detect and track the both hands, and extract their silhouettes from the low-resolution hand images captured by a webcam. We modeled skin color by two Gaussian distributions in RGB color space and use blob-matching method to detect and track the hands. Applying the foodfill algorithm we extracted hand silhouettes and recognize the hand shapes of Thumb-Up, Palm and Cross by detecting and analyzing their modes. Then, with analyzing the context of hand movement, we recognized five predefined one-hand or both-hand gestures. Assuming that one main user shows up for accurate hand detection, the proposed gesture recognition method has been proved its efficiency and accuracy in many real-time demos.

Real-time Image Scanning System for Detecting Tunnel Cracks Using Linescan Cameras

  • Jeong, Dong-Hyun;Kim, Young-Rin;Cho, I-Sac;Kim, Eun-Ju;Lee, Kang-Moon;Jin, Kwang-Won;Song, Chang-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.726-736
    • /
    • 2007
  • In this paper, real-time image scanning system using linescan cameras is designed. The system is specially designed to diagnose and analyse the conditions of tunnels such as crack widths through the captured images. The system consists of two major parts, the image acquisition system and the image merging system. To save scanned image data into storage media in real-time, the image acquisition system has been designed with two different control and management modules. The control modules are in charge of controlling the hardware device and the management modules handle system resources so that the scanned images are safely saved to the magnetic storage devices. The system can be mounted to various kinds of vehicles. After taking images, the image merging system generates extended images by combining saved images. Several tests are conducted in laboratory as well as in the field. In the laboratory simulation, both systems are tested several times and upgraded. In the field-testing, the image acquisition system is mounted to a specially designed vehicle and images of the interior surface of the tunnel are captured. The system is successfully tested in a real tunnel with a vehicle at the speed of 20 km/h. The captured images of the tunnel condition including cracks are vivid enough for an expert to diagnose the state of the tunnel using images instead of seeing through his/her eyes.

  • PDF

Inspection Algorithm for Double-Cut Defect of Motor Shaft (모터 샤프트 이중컷 불량 검사 알고리즘)

  • Hwang, Myun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • This paper proposes an image-processing algorithm for inspecting double-cut defects in the motor shaft manufacturing process. The algorithm consists of extracting the outline using the brightness of the image, obtaining a binarized boundary graph using the extracted outline, and determining the defects from the graph. Defects in which two cut surfaces are separated are considered type 1 defects, and those in which two cut surfaces are connected are defined as type 2 defects. In an actual manufacturing process, 112 good samples and 44 defective samples (34 type 1 defects and 10 type 2 defects) were collected and used to verify the algorithm. The samples were judged with 100% accuracy for both type 1 and type 2 defects. The algorithm will be used in the field after securing reliability for various samples.

A Study on Image Segmentation Method Based on a Histogram for Small Target Detection (소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구)

  • Yang, Dong Won;Kang, Suk Jong;Yoon, Joo Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1305-1318
    • /
    • 2012
  • Image segmentation is one of the difficult research problems in machine vision and pattern recognition field. A commonly used segmentation method is the Otsu method. It is simpler and easier to implement but it fails if the histogram is unimodal or similar to unimodal. And if some target area is smaller than background object, then its histogram has the distribution close to unimodal. In this paper, we proposed an improved image segmentation method based on 1D Otsu method for a small target detection. To overcome drawbacks by unimodal histogram effect, we depressed the background histogram using a logarithm function. And to improve a signal to noise ratio, we used a local average value by the neighbor window for thresholding using 1D Otsu method. The experimental results show that our proposed algorithm performs better segmentation result than a traditional 1D Otsu method, and needs much less computational time than that of the 2D Otsu method.

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.

A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network (컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구)

  • Kang, Hyeon-Woo;Kang, Hang-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.393-400
    • /
    • 2016
  • Recently, there have been various researches on efficient and automatic analysis on urban environment methods that utilize the computer vision and machine learning technology. Among many new analyses, urban safety analysis has received a major attention. In order to predict more accurately on safety score and reflect the human visual perception, it is necessary to consider the generic and local information that are most important to human perception. In this paper, we use Double-column Convolutional Neural network consisting of generic and local columns for the prediction of urban safety. The input of generic and local column used re-sized and random cropped images from original images, respectively. In addition, a new learning method is proposed to solve the problem of over-fitting in a particular column in the learning process. For the performance comparison of our Double-column Convolutional Neural Network, we compare two Support Vector Regression and three Convolutional Neural Network models using Root Mean Square Error and correlation analysis. Our experimental results demonstrate that our Double-column Convolutional Neural Network model show the best performance with Root Mean Square Error of 0.7432 and Pearson/Spearman correlation coefficient of 0.853/0.840.

Resizing effect of image and ROI in using control charts to monitor image data (이미지 데이터를 모니터링하는 관리도에서 이미지와 ROI 크기 조정의 영향)

  • Lee, JuHyoung;Yoon, Hyeonguk;Lee, Sungmin;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.487-501
    • /
    • 2017
  • A machine vision system (MVS) is a computer system that utilizes one or more image-capturing devices to provide image data for analysis and interpretation. Recently there have been a number of industrial- and medical-device applications where control charts have been proposed for use with image data. The use of image-based control charting is somewhat different from traditional control charting applications, and these differences can be attributed to several factors, such as the type of data monitored and how the control charts are applied. In this paper, we investigate the adjustment effect of image size and region of interest (ROI) size, when we use control charts to monitor grayscale image data in industry.

Hermetic Characteristics of Negative PR (Negative PR의 기밀 특성)

  • Choi, Eui-Jung;Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF