• Title/Summary/Keyword: Machine-vision

Search Result 883, Processing Time 0.035 seconds

Design of a Telecentric Lens with a Smartphone Camera to Utilize Machine Vision (머신비전을 위한 스마트폰용 텔레센트릭 렌즈의 설계)

  • Choi, Yeon-Chan;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • A generalized structural design equation can be used to simplify and systematize a telecentric lens system composed of multiple lenses, as a creative design method of the authors. Through this structural equation, we have investigated the feasibility and design methodology of a telecentric lens equipped with a conventional smartphone camera for machine vision. As a result, we could verify and present a useful, generalized structural equation termed the $f{\theta}$ formula, being able to divide and combine the whole telecentric lens system into two modularized lens groups.

Night-time Vehicle Detection Based On Multi-class SVM (다중-클래스 SVM 기반 야간 차량 검출)

  • Lim, Hyojin;Lee, Heeyong;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.325-333
    • /
    • 2015
  • Vision based night-time vehicle detection has been an emerging research field in various advanced driver assistance systems(ADAS) and automotive vehicle as well as automatic head-lamp control. In this paper, we propose night-time vehicle detection method based on multi-class support vector machine(SVM) that consists of thresholding, labeling, feature extraction, and multi-class SVM. Vehicle light candidate blobs are extracted by local mean based thresholding following by labeling process. Seven geometric and stochastic features are extracted from each candidate through the feature extraction step. Each candidate blob is classified into vehicle light or not by multi-class SVM. Four different multi-class SVM including one-against-all(OAA), one-against-one(OAO), top-down tree structured and bottom-up tree structured SVM classifiers are implemented and evaluated in terms of vehicle detection performances. Through the simulations tested on road video sequences, we prove that top-down tree structured and bottom-up tree structured SVM have relatively better performances than the others.

Future Trends of IoT, 5G Mobile Networks, and AI: Challenges, Opportunities, and Solutions

  • Park, Ji Su;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.743-749
    • /
    • 2020
  • Internet of Things (IoT) is a growing technology along with artificial intelligence (AI) technology. Recently, increasing cases of developing knowledge services using information collected from sensor data have been reported. Communication is required to connect the IoT and AI, and 5G mobile networks have been widely spread recently. IoT, AI services, and 5G mobile networks can be configured and used as sensor-mobile edge-server. The sensor does not send data directly to the server. Instead, the sensor sends data to the mobile edge for quick processing. Subsequently, mobile edge enables the immediate processing of data based on AI technology or by sending data to the server for processing. 5G mobile network technology is used for this data transmission. Therefore, this study examines the challenges, opportunities, and solutions used in each type of technology. To this end, this study addresses clustering, Hyperledger Fabric, data, security, machine vision, convolutional neural network, IoT technology, and resource management of 5G mobile networks.

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

Vignetting Dimensional Geometric Models and a Downhill Simplex Search

  • Kim, Hyung Tae;Lee, Duk Yeon;Choi, Dongwoon;Kang, Jaehyeon;Lee, Dong-Wook
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • Three-dimensional (3D) geometric models are introduced to correct vignetting, and a downhill simplex search is applied to determine the coefficients of a 3D model used in digital microscopy. Vignetting is nonuniform illuminance with a geometric regularity on a two-dimensional (2D) image plane, which allows the illuminance distribution to be estimated using 3D models. The 3D models are defined using generalized polynomials and arbitrary coefficients. Because the 3D models are nonlinear, their coefficients are determined using a simplex search. The cost function of the simplex search is defined to minimize the error between the 3D model and the reference image of a standard white board. The conventional and proposed methods for correcting the vignetting are used in experiments on four inspection systems based on machine vision and microscopy. The methods are investigated using various performance indices, including the coefficient of determination, the mean absolute error, and the uniformity after correction. The proposed method is intuitive and shows performance similar to the conventional approach, using a smaller number of coefficients.

Current advances in detection of abnormal egg: a review

  • Jun-Hwi, So;Sung Yong, Joe;Seon Ho, Hwang;Soon Jung, Hong;Seung Hyun, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.813-829
    • /
    • 2022
  • Internal and external defects of eggs should be detected to prevent cross-contamination of intact eggs by abnormal eggs during storage. Emerging detection technologies for abnormal eggs were introduced as an alternative to human inspection. The advanced technologies could rapidly detect abnormal eggs. Abnormal egg detection technologies using acoustic response, machine vision, and spectroscopy have been commercialized in the poultry industry. Non-destructive egg quality assessment methods meanwhile could preserve the value of eggs and improve detection efficiency. In order to improve detection efficiency, it is essential to select a proper algorithm for classifying the types of abnormal eggs. This review deals with the performance of the detection technologies for various types of abnormal eggs in recently published resources. In addition, the discriminant methods and detection algorithms of abnormal eggs reported in the published literature were investigated. Although the majority of the studies were conducted on a laboratory scale, the developed detection technologies for internal and external defects in eggs were technically feasible to obtain the excellent detection accuracy. To apply the developed detection technologies to the poultry industry, it is necessary to achieve the detection rates required from the industry.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection (제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.108-111
    • /
    • 2022
  • Applying deep learning to machine vision systems for defect detection of products requires vast amounts of training data about various defect cases. However, since data imbalance occurs according to the type of defect in the actual manufacturing industry, it takes a lot of time to collect product images enough to generalize defect cases. In this paper, we apply a Siamese neural network that can be learned with even a small amount of data to product defect detection, and modify the image pairing method and contrastive loss function by properties the situation of product defect image data. We indirectly evaluated the embedding performance of Siamese neural networks using AUC-ROC, and it showed good performance when the images only paired among same products, not paired among defective products, and learned with exponential contrastive loss.

  • PDF

Intelligent Shoes for Detecting Blind Falls Using the Internet of Things

  • Ahmad Abusukhon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2377-2398
    • /
    • 2023
  • In our daily lives, we engage in a variety of tasks that rely on our senses, such as seeing. Blindness is the absence of the sense of vision. According to the World Health Organization, 2.2 billion people worldwide suffer from various forms of vision impairment. Unfortunately, blind people face a variety of indoor and outdoor challenges on a daily basis, limiting their mobility and preventing them from engaging in other activities. Blind people are very vulnerable to a variety of hazards, including falls. Various barriers, such as stairs, can cause a fall. The Internet of Things (IoT) is used to track falls and send a warning message to the blind caretakers. One of the gaps in the previous works is that they were unable to differentiate between falls true and false. Treating false falls as true falls results in many false alarms being sent to the blind caretakers and thus, they may reject the IoT system. As a means of bridging this chasm, this paper proposes an intelligent shoe that is able to precisely distinguish between false and true falls based on three sensors, namely, the load scale sensor, the light sensor, and the Flex sensor. The proposed IoT system is tested in an indoor environment for various scenarios of falls using four models of machine learning. The results from our system showed an accuracy of 0.96%. Compared to the state-of-the-art, our system is simpler and more accurate since it avoids sending false alarms to the blind caretakers.

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF