AMachine vision is a promising tool for the autonomous guidance of farm machinery. Conventional CCD camera for the machine vision needs a desktop PC to install a frame grabber, however, a web camera is ready to use when plugged in the USB port. A web camera with a notebook PC can replace existing camera system. Autonomous steering control system of this research was intended to be used for combine harvester. If the web camera can recognize cut/uncut edge of crop, which will be the reference for steering control, then the position of the machine can be determined in terms of lateral offset and heading angle. In this research, a white line was used as a cut/uncut edge of crop for steering control. Image processing algorithm including capturing image in the web camera was developed to determine the desired travel path. An experimental vehicle was constructed to evaluate the system performance. Since the vehicle adopted differential drive steering mechanism, it is steered by the difference of rotation speed between left and right wheels. According to the position of vehicle, the steering algorithm was developed as well. Evaluation tests showed that the experimental vehicle could travel within an RMS error of 0.8cm along the desired path at the ground speed of $9\sim41cm/s$. Even when the vehicle started with initial offsets or tilted heading angle, it could move quickly to track the desired path after traveling $1.52\sim3.5m$. For turning section, i.e., the curved path with curvature of 3 m, the vehicle completed its turning securely.
Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
Journal of Biosystems Engineering
/
v.26
no.1
/
pp.29-38
/
2001
A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.
Korean Journal of Construction Engineering and Management
/
v.11
no.4
/
pp.68-79
/
2010
During the last two decades, several tele-operated and machine-vision-assisted systems have been developed in construction and maintenance area such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans which are used in previously developed pavement crack sealing systems. The comparison is based on computational cost versus overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in productivity improvement of the automatic pavement crack sealing system developed.
This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, manipulator attached with the specially designed gripper, and plug tray transfer system. Results of this study were as follows. 1. A machine vision system for a robotic transplanter was developed. The success rates of detecting empty cells and bad seedlings in 72-cell and 128-cell plug-trays for cucumber seedlings were 98.8% and 94.9% respectively. The success rates of identifying leaf orientation for 72- cell and 128-cell plug-trays were 93.5% and 91.0%, respectively. 2. A cartesian coordinate manipulator for a robotic transplanter with 3 degrees of freedom was constructed. The accuracy of position control was $\pm$ 1mm. 3. The robotic transplanter was tested with a shovel-type finger. Without considering leaf orientation, the success rates of transplanting healthy cucumber seedlings for 72-cell and 128-cell plug-trays were 95.5% and 94.5%, respectively. Considering leaf orientation, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0%, respectively.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.12
/
pp.903-909
/
2018
In this paper, performance analysis of machine vision techniques is presented to improve the convenience and speed of automatic inspection in the industrial field when machine vision is applied to the image not taken in the stationary state, but in the moving state on a conveyer. When the length of cylindrical rods used for automobiles was measured using the edge detection method, the conveying speed increased, and the uncertainty of the boundary between the background and the part image increased, which resulted in a shorter image of the object taken. This paper proposes a linear compensation method to predict the biased errors of the length measurements after examining the pattern of biased and random errors, respectively, with 6 different types of specimens and 7 velocity stages. The length measurement corrected by the linear compensation method had the same accuracy as the stationary state within the speed range of 30 cm/s and could enhance the application capability in automatic inspections.
Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.
Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
Journal of Sensor Science and Technology
/
v.33
no.2
/
pp.112-116
/
2024
Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.
Machine-to-machine communications for healthcare is emerging for the benefit of humans. In addition to novel medium access, we provide a systematic view to look for ways to develop technology to accomplish this goal, and a thorough vision toward effective system and network design.
Transactions of the Korean Society of Machine Tool Engineers
/
v.16
no.2
/
pp.92-99
/
2007
Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding systems, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, novel presented, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.
The Transactions of the Korea Information Processing Society
/
v.7
no.6
/
pp.1973-1979
/
2000
Driving the need for machine vision system is growing consumer demand for quality and defect-free products. Especially it is the most important in tarpaulin's manufacturing process achieves automatically by machine vision instead of by man vision. In this paper pinholes detection is performed by using morphology algorithms. Top hat transform is one of morphology applications. This transform take high performance of defect detection in the case that unexpected changes occur in some non-uniform background. For pinholes defect, automatic visual inspection system has been developed, which was composed by a line-scan camera, illumination, a frame grabber, a motor driver and control units. This system has excellent capacity to defect pinholes to the 0.1 mm by 0.5 mm in size and to work in moving objects by maximum 20 m/min in speed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.