• Title/Summary/Keyword: Machine-to-machine (M2M)

Search Result 1,081, Processing Time 0.04 seconds

The Effect of Pretreatment(Q/T) on the Plasma Nitriding of SCM435 Structural Steel (SCM435 구조용 합금강의 플라즈마 질화에 미치는 전처리(Q/T)의 영향)

  • Lim, Young-Phil;Park, Dae-Chul;Lee, Jae-Sig;You, Yong-Zoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.2
    • /
    • pp.99-110
    • /
    • 1998
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of SCM435 structural steel nitrided by micro-pulse plasma was investigated. The quenching and tempering temperatures for obtaining matrix hardness of SCM435 steel on range of HRC30 to HRC40 desired for machine parts were about $860^{\circ}C$ and $500^{\circ}C$ respectively. The case depth of SCM435 nitrided at $480^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and was approximately $150{\mu}m$. However, hardness and compactness of nitrified layer on Q/T treated specimen were more heigher than annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrified layer decreased with the temperature. Phase mixture of ${\gamma}^{\prime}$-phase($Fe_4N$) and ${\varepsilon}$-phase($Fe_3N$) were detected by XRD analysis in the nitrified layer formed at optimum nitriding condition, and only single ${\gamma}^{\prime}$-phase was detected in the nitrified layer formed at higher nitriding temperature such as $540^{\circ}C$. The optimum nitriding temperature was approximately $480^{\circ}C$ which is lower than tempering temperature for preventing softening behavior of SCM435 matrix during nitriding process and the surface hardness of nitrified layer obtained by optimum preheat treatment condition was about Hv930.

  • PDF

The Effect of Pre-Heat Treatment Parameters on the Ion Nitriding of Tool Steel (금형공구강의 이온질화에 미치는 이전열처리 조건의 영향)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of STD11 and STD61 tool steel nitrided by micro-pulse plasma were investigated. The quenching temperature for obtaining matrix hardness of STD11 and STD61 steel on range of HRC 50 to HRC 60 desired for machine parts is about $1070^{\circ}C$ and $1020^{\circ}C$ respectively. The hardness of STD11 and STD61 quenched at the temperature was HRC 63 and HRC 56 respectively. The nitrided case depth of STD11 and STD61 nitrided at $550^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and the depth was approximately $100{\mu}m$. However, hardness and compactness of nitrided layer on Q/T treated specimen were higher than the annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrided layer decreased with the increase of temperature. Phase mixture of ${\gamma}-Fe_4N$ and ${\varepsilon}-Fe_{2-3}N$ was detected by XRD analysis in the nitrided layer formed at the optimum nitriding condition. The optimum nitriding temperature was approximately $490^{\circ}C$ which was $10^{\circ}C$ lower than the tempering temperature for preventing softening behavior of STD11 and STD61 matrix during nitriding process and the surface hardness of nitrided layer obtained by optimum pre-heat treatment condition was about Hv1400.

  • PDF

Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool (단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교)

  • Choi, Hwan-Jin;Jeon, Eun-Chae;Choi, Doo-Sun;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

High-accuracy and High-speed Groove Die Set (고정도.고속 Groove Die Set)

  • Kim, Gun-Hoi
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Currently existing high-accuracy and high-speed die sets used in reciprocal press create scratches at the surface of guide posts, steel balls, and bushes due to vertical movement of balls with point-contacts between inner surface of bushes and guide posts. Consequently, accuracy of the die set and the life span of the metal mold are reduced. However, those scratches could reduce the pre-load of the steel ball. This research designed and developed a groove-type die set which improves life span of the die set by eliminating point-contacts of steel balls with guide posts. The guide post consisted of a steel-ball retainer, a steel-ball retainer stopper, a guide bush, a guide pin, a snap ring, and a spring. The steel-ball retainer has 72 holes with 8 columns of 9 holes in each column. The inner surface of the guide bush was grinded(surface roughness: $Ra\;\\;0.2{\mu}m$, accuracy: $0\;{\sim}\;-0.002mm$) after NC turning and heat treatment. Also, a line of small intermediate pocket was processed inside of the guide bush for lubrication and elimination of foreign materials. Guide grooves of steel balls were processed using a wire EDM(Electrical Discharge Machining) after heat treatment. With such a design of the guide post stated above, loads against steel balls could be dispersed greatly by the line contacts through the guide groove between the guide post and the guide bush, and the life span of the guide post could be expanded semi-permanently.

MICROHARDNESS AND SURFACE ROUGHNESS OF SEALANT AND FLOWABLE COMPOSITE RESINS (치면열구전색제와 유동성 복합 레진의 미세 경도 및 표면 조도의 비교)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Seon-Mi;Choi, Ji-Eun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • This study was performed to compare the wear resistance of sealant and flowable resins for analyzing the effect of flowable resin as a sealant in preventive resin restorations. Specimens were made and Vicker's hardness number and surface roughness were measured. SEM observations of the polished and abraded surfaces were established. Kruskal-Wallis rank test and Mann-Whitney U test at the significant level of ${\alpha}$=0.05 were used. The following results were obtained: 1. The microhardness was decreased among groups in following order: Z350 (3M ESPE, U.S.A), Estelite (Tokuyama Dental, Japan) and Ultraseal (Ultradent, U.S.A). There were significant differences in all groups (p<0.0001). 2. The surface roughness was decreased among groups in following order: Ultraseal XT plus, Palfique Estelite LV and Filtek Z350 flowable. However, there is no statistically significant differences in roughness among Estellite, Z350 and Ultraseal at the significance level of ${\alpha}$=0.05, with p=0.116 3. SEM observation of the unworn and worn surfaces revealed the qualitative differences in the wear appearance among groups. The results in this study indicate that flowable resin is better than sealant in aspect of physical properties.

  • PDF

Physical Properties of Different Automixing Resin Cements and the Shear Bond Strength on Dentin (수종 Automixing 레진시멘트의 물성과 상아질에 대한 전단결합강도)

  • Song, Chang-Kyu;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different automixing resin cements and the shear bond strength on dentin. For this study, two self-adhesive automixing resin cement(Rely-X Unicem(3M ESPE, St. Paul, USA), Embrace resin cement(Pulpdent, Oakland, USA)) and one chemical polymerizing resin cement(Resiment Ready-Mix(J.L.Blosser Inc., Liberty Missouri, USA)) were used. To evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. The specimens were fabricated using Teflon mould according to manufacturers' instructions and stored for 24 hours in an atmosphere of 100% humidity. To evaluate the shear bond strength on dentin, each cements were adhered to buccal dentinal surface of extracted human lower molars in 2mm diameter. Physical properties and shear bond strengths were measured using universal testing machine(Z010, Zwick GmbH, Ulm, Germany) at a crosshead speed of 0.5mm/min. The physical properties and shear bond strength of different automixing resin cements were statistically analyzed and compared between groups using One-way ANOVA test and Schffe post-hoc test at the 95% level of confidence. The result shows that chemical polymerizing automixing resin cement represents the relatively higher physical properties and shear bond strength than self-adhesive automixing resin cements.

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

INFLUENCE OF ADHESIVE APPLICATION ON SHEAR BOND STRENGTH OF THE RESIN CEMENT TO INDIRECT RESIN COMPOSITE (치과용 접착제가 복합레진 인레이와 레진시멘트의 결합력에 미치는 영향)

  • Song, Mi-Hae;Park, Su-Jung;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.419-427
    • /
    • 2008
  • This study analyzed the influence of dental adhesive/primer on the bond strength between indirect resin composite and the resin cement. Seventy disc specimens of indirect resin composite (Tescera Dentin, Bisco) were fabricated. And bonding area of all specimens were sandblasted and silane treated for one minute. The resin cements were used with or without application of adhesive/primer to bonding area of indirect resin restoration, Variolink-II (Ivoclar-Vivadent) : Exite DSC, Panavia-F (Kuraray) : ED-Primer, RelyX Unicorn (3M ESPE) Single- Bond, Duolink (Risco) : One-step, Mulitlink (Ivoclar-Vivadent) : Multilinh Primer. Shear bond strength was measured by Instron universal testing machine. Adhesive application improved shear bond strength (p<0.05) But Variolink II and Panavia-F showed no statistically significant difference according to the adhesive application. With the above results, when resin inlay is luted by resin cement it seems that application of dental adhesive/primer is necessary in order to improve the bond strength.