• 제목/요약/키워드: Machine-being

검색결과 1,066건 처리시간 0.028초

데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율 (Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance)

  • 신승수;조휘연;김용혁
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.49-55
    • /
    • 2021
  • 최근에는 데이터베이스의 발달로 금융, 보안, 네트워크 등에서 생성된 많은 데이터가 저장 가능하며, 기계학습 기반 분류기를 통해 분석이 이루어지고 있다. 이 때 주로 야기되는 문제는 데이터 불균형으로, 학습 시 다수 범주의 데이터들로 과적합이 되어 분류 정확도가 떨어지는 경우가 발생한다. 이를 해결하기 위해 소수 범주의 데이터 수를 증가시키는 오버샘플링 전략이 주로 사용되며, 데이터 분포에 적합한 기법과 인자들을 다양하게 조절하는 과정이 필요하다. 이러한 과정의 개선을 위해 본 연구에서는 스모트와 생성적 적대 신경망 등 다양한 기법 기반의 오버샘플링 조합과 비율을 유전알고리즘을 통해 탐색하고 최적화 하는 전략을 제안한다. 제안된 전략과 단일 오버샘플링 기법으로 신용카드 사기 탐지 데이터를 샘플링 한 뒤, 각각의 데이터들로 학습한 분류기의 성능을 비교한다. 그 결과 유전알고리즘으로 기법별 비율을 탐색하여 최적화 한 전략의 성능이 기존 전략들 보다 우수했다.

SDS 환경의 유사도 기반 클러스터링 및 다중 계층 블룸필터를 활용한 분산 중복제거 기법 (Distributed data deduplication technique using similarity based clustering and multi-layer bloom filter)

  • 윤다빈;김덕환
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권5호
    • /
    • pp.60-70
    • /
    • 2018
  • 클라우드 환경에서 다수의 사용자가 물리적 서버를 가상화하여 사용할 수 있도록 편의성을 제공하는 Software Defined Storage(SDS)를 적용하고 있지만 한정된 물리적 자원을 고려하여 공간 효율성을 최적화하는 솔루션이 필요하다. 기존의 데이터 중복제거 시스템에서는 서로 다른 스토리지에 업로드 된 중복 데이터가 중복제거되기 어렵다는 단점이 있다. 본 논문에서는 유사도기반 클러스터링과 다중 계층 블룸 필터를 적용한 분산 중복제거 기법을 제안한다. 라빈 해시를 이용하여 가상 머신 서버들 간의 유사도를 판단하고 유사도가 높은 가상머신들을 클러스터 함으로써 개별 스토리지 노드별 중복제거 효율에 비하여 성능을 향상시킨다. 또한 중복제거 프로세스에 다중 계층 블룸 필터를 접목하여 처리 시간을 단축하고 긍정오류를 감소시킬 수 있다. 실험결과 제안한 방법은 IP주소 기반 클러스터를 이용한 중복제거 기법에 비해 처리 시간의 차이가 없으면서, 중복제거율이 9% 높아짐을 확인하였다.

전자투표 신뢰성 향상을 위한 투표자 검증용 영수증 발급 기술 (A Voter Verifiable Receipt in Electronic Voting with Improved Reliability)

  • 이광우;이윤호;원동호;김승주
    • 정보보호학회논문지
    • /
    • 제16권4호
    • /
    • pp.119-126
    • /
    • 2006
  • 최근 전자투표 시스템에 대한 투표자의 신뢰성을 높이기 위하여, 투표자가 자신의 투표 결과를 확신할 수 있도록 하는 영수증 발급 기술에 대한 연구가 활발히 진행되고 있다. 전자투표 영수증은 투표소 밖에서도 검증할 수 있어야 하기 때문에 개별 검증성과 함께 매표방지에 대한 요구사항을 만족해야 한다. 기존의 연구에서는 특수한 용지와 프린터를 필요로 하거나 투표기가 올바로 작동하는 것을 수시로 검증해야 하는 관리상의 문제점을 가지고 있었다. 본 논문에서는 전자투표에 대한 신뢰성을 높이면서, 특수한 종이나 프린터 또는 스캐너가 필요 없고 투표소 내의 기기나 관리자를 신뢰하지 않아도 되는 영수증 발급 방식을 제안한다.

클러스터 정보를 이용한 네트워크 이상상태 탐지방법 (A New Method to Detect Anomalous State of Network using Information of Clusters)

  • 이호섭;박응기;서정택
    • 정보보호학회논문지
    • /
    • 제22권3호
    • /
    • pp.545-552
    • /
    • 2012
  • 최근 우리는 급격한 정보통신 기술의 발달로 큰 변화를 겪었으며, 기존의 기반 시설들 및 서비스들이 정보통신기술과 융합되면서, 다시 한 번 환경 변화를 눈앞에 두고 있다. 정보통신의 발달은 이러한 이점들 외에도 여러 부작용을 낳고 있으며, 이러한 부작용들은 금전적 피해뿐만 아니라 국가적인 재난 상황으로 발전될 소지가 있다. 따라서 이들에 대한 탐지 및 신속한 대응이 중요하며, 이와 관련한 많은 시도가 이루어지고 있다. 이러한 예로는 침입탐지시스템이 있을 수 있다. 그러나 침입탐지시스템은 특정 트래픽이나, 파일이 악성인지 여부를 판단하는데 중점을 두고 있으며, 현재까지 변종이나 새롭게 개발된 악성 코드에 대한 탐지는 힘들다. 따라서 본 논문에서는 네트워크의 현재의 상황과 과거의 상황들을 비교하여, 현재 시점의 네트워크 모델이 정상인지 비정상인지를 판단할 수 있는 방법에 대해 제안한다.

Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구 (A case study on the application of process abnormal detection process using big data in smart factory)

  • 남현우
    • 응용통계연구
    • /
    • 제34권1호
    • /
    • pp.99-114
    • /
    • 2021
  • 반도체 제조 산업에서는 Big Data에 기초한 Smart Factory 도입과 적용이 가시화되면서 생산 공정의 각 단계에서 수집 가능한 다양한 센서(sensor) 데이터를 활용하여 공정 이상 탐지 및 최종 수율 예측 등에 다양한 분석 방법을 시도하고 있다. 현재 반도체 공정은 원료인 잉곳(ingot)에서 패키징(packaging) 작업 이전의 웨이퍼(wafer) 생산까지 500 600개 이상의 세부 공정과 이와 연계된 수천 개의 계측 공정으로 구성된다. 개별 계측 공정 내의 실제 계측 비율은 대상 제품 대비 0.1%에서 최대 5%를 넘지 못하고 계측 시점별로 일정하게 유지할 수 없다. 이러한 이유로 공정 각 단계의 정상 상태를 간접적으로 판단할 수 있는 장비 센서(sensor) 데이터를 활용하여 관리 여부를 판단하고자 하는 노력이 계속되고 있다. 본 연구에서는 장비 센서 데이터 기반의 공정 이상 탐지 프로세스를 정의하고 현재 적용 되고 있는 기술 통계량 기반 진단 방법의 단점을 보완하기 위해 FDA(Functional Data Analysis)방법을 활용하였다. 실제 현장 사례 데이터에 머신러닝을 이용하여 이상 탐지 정확도 비교를 통해 효과성을 검증하였다.

클라우드 무선접속 네트워크에서 상향링크 채널 상태 정보를 이용한 핑거프린팅 기반 실내 측위에 관한 연구 시스템 (Study of Localization Based on Fingerprinting Technique Using Uplink CSI in Cloud Radio Access Network)

  • 우상우;이상헌;문철
    • 한국정보기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.71-77
    • /
    • 2019
  • 최근 5G 표준화가 본격화되고 실내위치관련 서비스에 대한 수요가 증가하면서, 실내 측위 기술에 대한 연구가 다양한 산업분야에서 연구되고 있으며, WLAN(Wireless Local Area Network)을 이용한 핑거프린팅 기법 기반의 연구가 대표적이다. 본 논문은 UDN(Ultra Dense Network) 환경에서 C-RAN(Cloud Radio Access Network) 구조와 상향링크 CSI(Channel State Information)를 측위 기반정보로 사용하는 실내 측위 기술을 제안한다. 기존의 핑거프린팅 방식에 머신러닝 기술 중 하나인 KNN(K Nearest Neighbor) 기술을 결합하여 측위 정확도를 개선하였으며, 성능 분석을 위해 구축된 테스트베드에서 수행된 기존 실내 측위 기술과 제안 기술의 성능 비교 실험을 통해, 제안하는 기술이 측위 정확도를 개선함을 확인하였다.

데이터 중심 통합생산시스템 설계 및 구현: 대형항공부품가공 사례 (Design and Implementation of Integrated Production System for Large Aviation Parts)

  • 배성문;배효진;홍금석;박철순
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.208-219
    • /
    • 2021
  • In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.

Defect Diagnosis and Classification of Machine Parts Based on Deep Learning

  • Kim, Hyun-Tae;Lee, Sang-Hyeop;Wesonga, Sheilla;Park, Jang-Sik
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.177-184
    • /
    • 2022
  • The automatic defect sorting function of machinery parts is being introduced to the automation of the manufacturing process. In the final stage of automation of the manufacturing process, it is necessary to apply computer vision rather than human visual judgment to determine whether there is a defect. In this paper, we introduce a deep learning method to improve the classification performance of typical mechanical parts, such as welding parts, galvanized round plugs, and electro galvanized nuts, based on the results of experiments. In the case of poor welding, the method to further increase the depth of layer of the basic deep learning model was effective, and in the case of a circular plug, the surrounding data outside the defective target area affected it, so it could be solved through an appropriate pre-processing technique. Finally, in the case of a nut plated with zinc, since it receives data from multiple cameras due to its three-dimensional structure, it is greatly affected by lighting and has a problem in that it also affects the background image. To solve this problem, methods such as two-dimensional connectivity were applied in the object segmentation preprocessing process. Although the experiments suggested that the proposed methods are effective, most of the provided good/defective images data sets are relatively small, which may cause a learning balance problem of the deep learning model, so we plan to secure more data in the future.

도시철도 건설종사자의 맥파 스트레스 지수와 작업능력 지수 분석 (Analysis of Macpa Stress Index and Work Ability Index on Subway Construction Workers)

  • 채정식;이종빈;장성록
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.58-62
    • /
    • 2022
  • Metro subway construction is a field that requires a great deal of professional manpower. The aging of professionals has a negative impact on both productivity and health, owing to poor working environments, heavy lifting, underground work, and other factors. To address this issue, the government is progressively revising and enforcing health management law and regulation in the construction industry. Thus, the job stress and work ability of many professional subway construction workers, who are rapidly aging, are being analyzed to ensure their safety and improve their health. In this study, the Macpa stress index of Busan Metro Subway construction workers from Sasang to Hadan line was measured by using a Macpa measurement machine, and a work ability survey was conducted by using the questionnaire that was developed by the FIOH. The independent variables were age, years of service, job position, employment type, and occupation. While, the dependent variables were the Macpa stress index and work ability. The Kruskal-Wallis test was used because it was difficult to assume that the statistics of this study represented a normal distribution. The results showed that age, job position, and employment type affected Macpa stress index and revealed that as the age of the workers increased, their stress levels increased as well. Additionally, job position and employment type affected the work ability of the metro subway construction workers. In terms of job position, the technical engineers were under a lot of stress, and whereas the managers had the best work ability. The technical engineers were more stressed than the other workers because of a poor working environment. In terms of employment type, daily workers were under more stress and lower work ability than others.

비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계 (Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities)

  • 백수진;신윤희
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.285-293
    • /
    • 2021
  • 4차 산업혁명 시대가 도래함에 따라 다양한 산업 분야에서 AI 활용역량이 강조되고 있다. 그러나 현재 보편적 교육으로서의 AI 교육 설계 연구 및 역량 중심교육 커리큘럼 연구가 부족하다. 본 연구에서는 대학에서의 비전공자를 위한 역량 중심 AI 리터러시 함양을 위한 보편적 AI 교육을 설계하는 데 목적을 둔다. 인문계열 AI 기초교육 설계를 위해 3차에 걸쳐 전문가 대상으로 설문을 진행하였고, 그 결과를 반영하여 도출된 설계 내용의 신뢰도를 검증하였다. 그 결과, AI 리터러시 함양을 위한 주요역량은 데이터 리터러시, AI 이해 및 활용능력이었으며, 이를 토대로 도출된 주요 세부 영역으로는 데이터 구조 이해 및 가공, 시각화, 워드클라우드, 공공데이터 활용, 머신러닝 개념 이해 및 활용이었다. 본 연구를 통해 도출된 교육 설계 내용은 향후 역량 중심의 AI 보편적 교육의 필요성과 가치를 높일 수 있을 것으로 기대한다.