• Title/Summary/Keyword: Machine-Machine Interaction (MMI)

Search Result 2, Processing Time 0.016 seconds

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

Prediction of the Upper Limb Motion Based on a Geometrical Muscle Changes for Physical Human Machine Interaction (물리적 인간 기계 상호작용을 위한 근육의 기하학적 형상 변화를 이용한 상지부 움직임 예측)

  • Han, Hyon-Young;Kim, Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.927-932
    • /
    • 2010
  • Estimation methods of motion intention from bio-signal present challenges in man machine interaction(MMI) to offer user's command to machine without control of any devices. Measurements of meaningful bio-signals that contain the motion intention and motion estimation methods from bio-signal are important issues for accurate and safe interaction. This paper proposes a novel motion estimation sensor based on a geometrical muscle changes, and a motion estimation method using the sensor. For estimation of the motion, we measure the circumference change of the muscle which is proportional to muscle activation level using a flexible piezoelectric cable (pMAS, piezo muscle activation sensor), designed in band type. The pMAS measures variations of the cable band that originate from circumference changes of muscle bundles. Moreover, we estimate the elbow motion by applying the sensor to upper limb with least square method. The proposed sensor and prediction method are simple to use so that they can be used to motion prediction device and methods in rehabilitation and sports fields.