• Title/Summary/Keyword: Machine method

Search Result 7,745, Processing Time 0.035 seconds

Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service (사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법)

  • Mun, Jong Hyeok;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In the context-aware system, rule-based AI technology has been used in the abstraction process for getting context information. However, the rules are complicated by the diversification of user requirements for the service and also data usage is increased. Therefore, there are some technical limitations to maintain rule-based models and to process unstructured data. To overcome these limitations, many studies have applied machine learning techniques to Context-aware systems. In order to utilize this machine learning-based model in the context-aware system, a management process of periodically injecting training data is required. In the previous study on the machine learning based context awareness system, a series of management processes such as the generation and provision of learning data for operating several machine learning models were considered, but the method was limited to the applied system. In this paper, we propose a training data generating method of a machine learning model to extend the machine learning based context-aware system. The proposed method define the training data generating model that can reflect the requirements of the machine learning models and generate the training data for each machine learning model. In the experiment, the training data generating model is defined based on the training data generating schema of the cardiac status analysis model for older in health status notification service, and the training data is generated by applying the model defined in the real environment of the software. In addition, it shows the process of comparing the accuracy by learning the training data generated in the machine learning model, and applied to verify the validity of the generated learning data.

Design and manufacture of hybrid polyrnerconcrete bed for high speed machine tool (초고속 공작기계용 Hybrid Poymer Concrete bed 의 설계와 제작)

  • 서정도;임태성;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.404-409
    • /
    • 2004
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool life. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. Also, co-cure bonding method for functional part mounting was exhibited experimentally, by which manufacturing time and cost for polymer concrete bed will be remarkably reduced.

  • PDF

Structure Modeling of Machine Tools and Internet-based Implementation (공작기계 구조 모델링과 인터넷 기반 구현)

  • Hong Dong-Phyo;Seo Yoon-Ho;Kim In-Soo;Lee Gyu-Bong;Sheen Dong-Mok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.785-791
    • /
    • 2005
  • Reconfigurability of machine tools is one of the critical factors to realize the responsive manufacturing systems to satisfy the mass-customization production. This paper presents the methods to model and simulate the machine tools on Internet in response to change in the machining requirements. Specifically, a set of module combination rules and a modeling method of the structure of machine tools using connectivity graph are developed. In response to the user requirements, kinematic relations and structures of machine tools can be derived using the module combination rules and connectivity graph relationships. Internet-based simulator of machine tools is implemented and presented. The developed machine tool simulator can be used to verify the structure of machine tools derived from the user requirements.

  • PDF

Real-time Measurement and Analysis for Micro Circular Path of Two-Axes Stage Using Machine Vision (머신 비젼을 이용한 2축 스테이지의 마이크로 원형 궤적 실시간 측정 및 분석)

  • Kim, Ju-Kyung;Park, Jong-Jin;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.993-998
    • /
    • 2007
  • To verify the 2D or 3D positioning accuracy of a multi-axes stage is not easy, particularly, in the case the moving path of the stage is not linear. This paper is a study on a measuring method for the curved path accurately. A machine vision technique is used to trace the moving path of two-axes stage. To improve the accuracy of machine vision, a zoom lens is used for the 2D micro moving path. The accuracy of this method depends of the CCD resolution and array align accuracy with the zoom lens system. Also, a further study for software algorithm is required to increase the tracing speed. This technique will be useful to trace a small object in the 2D micro path in real-time accurately.

A Study on Fuzzy Temperature Control for the Barrels of Injection Molding Machine using PC based PLC (PC 기반 PLC를 이용한 사출성형기 배럴의 퍼지 온도 제어에 관한 연구)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.768-773
    • /
    • 2003
  • Injection molding has been widely used for the mass production of a plastic product. With the development of the relative technique, various injection molding techniques have been developed and we could get more precise plastic product. The temperature of a melting resin is an important factor in the injection molding and this temperature has direct influence on the quality of a plastic product. In the present injection molding machine, the deriation of a temperature controlled by PID control method is within 2$^{\circ}C$ in the injection molding machine but PID control method takes too much time to stabilize after preheating and its overshoot is so big. We applied fuzzy control to alleriate the problem. In this research, we experimented the fuzzy temperature control with the usage of PC based PLC.

A Development of Knowledge Error Analysis Methodology for practical use of Expert Systems (전문가시스템 실용화를 위한 지식오류분석방법론 연구)

  • Kim, Hyeon-Su
    • Asia pacific journal of information systems
    • /
    • v.6 no.2
    • /
    • pp.77-105
    • /
    • 1996
  • The accuracy of knowledge is a major concern for expert system developers and users. Machine learning approaches have recently been found to be useful in knowledge acquisition for expert systems. However, the accuracy of concept acquired from machine learning could not be analyzed in most cases. In this paper we develop a comprehensive knowledge error analysis methodology for practical use of expert systems. Decision tree induction is an important type of machine learning method for business expert systems. Here we start to analyze with knowledge acquired from decision tree induction method, and extend the results to develop error analysis methodology for general machine learning methods. We give several examples and illustrations for these results. We also discuss the applicability of these results to multistrategy learning approaches.

  • PDF

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

A Study on the Accuracy Evaluation Method of High Speed Machining (고속가공 시스템의 정밀도 평가방법에 관한 연구)

  • 손덕수;이안호;이정길;이우영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.335-340
    • /
    • 2004
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with those methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

Improvement of Torque Characteristics of a Rotatory Two-Phase Transverse Flux Machine Optimizing the shape of Rotor Pole (자석 형상 최적화를 통한 축방향 이상 횡자속형 전동기의 토크 특성 향상에 관한 연구)

  • Ahn, Hee-Tae;Jang, Gun-Hee;Chang, Jung-Hwan;Chung, Shi-Uk;Kang, Do-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.286-292
    • /
    • 2008
  • Transverse flux machine (TFM) has been developed to drive a machine of large input power at low-speed. However, it has complicated structure and large torque ripple due to its inherent structure In this paper the characteristics of torque of a rotatory two-phase TFM are analyzed by using the 3-dimensional finite to element method and optimal design. This research shows that one of the effective design variables is the skew angle of permanent magnet. The skew angles of permanent magnet are optimized by using a Progressive Quadratic Response Surface Method (PQRSM). It also shows that the proposed optimal skew magnet not only increases average torque but also decreases torque ripple of a rotatory two-phase TFM.

  • PDF