• Title/Summary/Keyword: Machine learning in communications

Search Result 109, Processing Time 0.021 seconds

A Machine Learning based Method for Measuring Inter-utterance Similarity for Example-based Chatbot (예제 기반 챗봇을 위한 기계 학습 기반의 발화 간 유사도 측정 방법)

  • Yang, Min-Chul;Lee, Yeon-Su;Rim, Hae-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3021-3027
    • /
    • 2010
  • Example-based chatBot generates a response to user's utterance by searching the most similar utterance in a collection of dialogue examples. Though finding an appropriate example is very important as it is closely related to a response quality, few studies have reported regarding what features should be considered and how to use the features for similar utterance searching. In this paper, we propose a machine learning framework which uses various linguistic features. Experimental results show that simultaneously using both semantic features and lexical features significantly improves the performance, compared to conventional approaches, in terms of 1) the utilization of example database, 2) precision of example matching, and 3) the quality of responses.

Comparative analysis of model performance for predicting the customer of cafeteria using unstructured data

  • Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.5
    • /
    • pp.485-499
    • /
    • 2023
  • This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.

Automatic Detection of Anomalies in Blood Glucose Using a Machine Learning Approach

  • Zhu, Ying
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data.We study the problem of automatically detecting anomalies in themeasured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.

Development of an impact Identification Program in Mathematical Education Research Using Machine Learning and Network (기계학습과 네트워크를 이용한 수학교육 연구의 영향력 판별 프로그램 개발)

  • Oh, Se Jun;Kwon, Oh Nam
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.21-45
    • /
    • 2023
  • This study presents a machine learning program designed to identify impactful papers in the field of mathematics education. To achieve this objective, we examined the impact of papers from a scientific econometrics perspective, developed a mathematics education research network, and defined the impact of mathematics education research using PageRank, a network centrality index. We developed a machine learning model to determine the impact of mathematics education research and identified the journals with the highest percentage of impactful articles to be the Journal for Research in Mathematics Education (25.66%), Educational Studies in Mathematics (22.12%), Zentralblatt für Didaktik der Mathematik (8.46%), Journal of Mathematics Teacher Education (5.8%), and Journal of Mathematical Behaviour (5.51%). The results of the machine learning program were similar to the findings of previous studies that were read and evaluated qualitatively by experts in mathematics education. Significantly, the AI-assisted impact evaluation of mathematics education research, which typically requires significant human resources and time, was carried out efficiently in this study.

Calculating the Importance of Attributes in Naive Bayesian Classification Learning (나이브 베이시안 분류학습에서 속성의 중요도 계산방법)

  • Lee, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.83-87
    • /
    • 2011
  • Naive Bayesian learning has been widely used in machine learning. However, in traditional naive Bayesian learning, we make two assumptions: (1) each attribute is independent of each other (2) each attribute has same importance in terms of learning. However, in reality, not all attributes are the same with respect to their importance. In this paper, we propose a new paradigm of calculating the importance of attributes for naive Bayesian learning. The performance of the proposed methods has been compared with those of other methods including SBC and general naive Bayesian. The proposed method shows better performance in most cases.

A Motivation-Based Action-Selection-Mechanism Involving Reinforcement Learning

  • Lee, Sang-Hoon;Suh, Il-Hong;Kwon, Woo-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.904-914
    • /
    • 2008
  • An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.

Applying Machine Learning in UX Design Process (UX 디자인 과정에서의 머신러닝 활용 방법)

  • Lee, Ji-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.157-164
    • /
    • 2019
  • This paper investigates applicable methods of using machine learning(ML) in design process that is currently at infant stage and discuss how designers can use machine learning in UX design process. This research is differentiated from design method for machine learning-based products or services. For this purpose, this paper conducted literature reviews and case investigation and discussed three categories of design method of combination with such as 1) UX design centered ML, 2) ML system centered UX, and 3) UX-ML matchmaking. With this investigation, the workshop was conducted with specifically applicable methods of 2) and 3) for designers. Throughout the workshop, this paper analyzed each method' process with pros and cons in details. Throughout the process, this paper suggests precise methods of applying ML into UX design process.

Prediction of the number of public bicycle rental in Seoul using Boosted Decision Tree Regression Algorithm

  • KIM, Hyun-Jun;KIM, Hyun-Ki
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • The demand for public bicycles operated by the Seoul Metropolitan Government is increasing every year. The size of the Seoul public bicycle project, which first started with about 5,600 units, increased to 3,7500 units as of September 2021, and the number of members is also increasing every year. However, as the size of the project grows, excessive budget spending and deficit problems are emerging for public bicycle projects, and new bicycles, rental office costs, and bicycle maintenance costs are blamed for the deficit. In this paper, the Azure Machine Learning Studio program and the Boosted Decision Tree Regression technique are used to predict the number of public bicycle rental over environmental factors and time. Predicted results it was confirmed that the demand for public bicycles was high in the season except for winter, and the demand for public bicycles was the highest at 6 p.m. In addition, in this paper compare four additional regression algorithms in addition to the Boosted Decision Tree Regression algorithm to measure algorithm performance. The results showed high accuracy in the order of the First Boosted Decision Tree Regression Algorithm (0.878802), second Decision Forest Regression (0.838232), third Poison Regression (0.62699), and fourth Linear Regression (0.618773). Based on these predictions, it is expected that more public bicycles will be placed at rental stations near public transportation to meet the growing demand for commuting hours and that more bicycles will be placed in rental stations in summer than winter and the life of bicycles can be extended in winter.

Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data

  • Dang, Hung V.;Raza, Mohsin;Tran-Ngoc, H.;Bui-Tien, T.;Nguyen, Huan X.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.495-508
    • /
    • 2021
  • This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.