• Title/Summary/Keyword: Machine learning in communications

Search Result 111, Processing Time 0.016 seconds

Implementation and Performance Measuring of Erasure Coding of Distributed File System (분산 파일시스템의 소거 코딩 구현 및 성능 비교)

  • Kim, Cheiyol;Kim, Youngchul;Kim, Dongoh;Kim, Hongyeon;Kim, Youngkyun;Seo, Daewha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1515-1527
    • /
    • 2016
  • With the growth of big data, machine learning, and cloud computing, the importance of storage that can store large amounts of unstructured data is growing recently. So the commodity hardware based distributed file systems such as MAHA-FS, GlusterFS, and Ceph file system have received a lot of attention because of their scale-out and low-cost property. For the data fault tolerance, most of these file systems uses replication in the beginning. But as storage size is growing to tens or hundreds of petabytes, the low space efficiency of the replication has been considered as a problem. This paper applied erasure coding data fault tolerance policy to MAHA-FS for high space efficiency and introduces VDelta technique to solve data consistency problem. In this paper, we compares the performance of two file systems, MAHA-FS and GlusterFS. They have different IO processing architecture, the former is server centric and the latter is client centric architecture. We found the erasure coding performance of MAHA-FS is better than GlusterFS.