• Title/Summary/Keyword: Machine learning algorithm

Search Result 1,492, Processing Time 0.026 seconds

A Study on Random Forest-based Estimation Model for Changing the Automatic Walking Mode of Above Knee Prosthesis (대퇴의족의 자동 보행 모드 변경을 위한 랜덤 포레스트 기반 추정 모델 개발에 관한 연구)

  • Na, Sun-Jong;Shin, Jin-Woo;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • The pattern recognition or fuzzy inference, which is mainly used for the development of the automatic walking mode change of the above knee prosthesis, has a disadvantage in that it is difficult to estimate with the immediate change of the walking environment. In order to solve a disadvantage, this paper developed an algorithm that automatically converts the walking mode of the next step by estimating the walking environment at a specific gait phase. Since the proposed algorithm should be implanted and operated in the microcontroller, it is developed using the random forest base in consideration of calculation amount and estimated time. The developed random forest based gait and environmental estimation model were implanted in the microcontroller and evaluated for validity.

Genetic Design of Granular-oriented Radial Basis Function Neural Network Based on Information Proximity (정보 유사성 기반 입자화 중심 RBF NN의 진화론적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.436-444
    • /
    • 2010
  • In this study, we introduce and discuss a concept of a granular-oriented radial basis function neural networks (GRBF NNs). In contrast to the typical architectures encountered in radial basis function neural networks(RBF NNs), our main objective is to develop a design strategy of GRBF NNs as follows : (a) The architecture of the network is fully reflective of the structure encountered in the training data which are granulated with the aid of clustering techniques. More specifically, the output space is granulated with use of K-Means clustering while the information granules in the multidimensional input space are formed by using a so-called context-based Fuzzy C-Means which takes into account the structure being already formed in the output space, (b) The innovative development facet of the network involves a dynamic reduction of dimensionality of the input space in which the information granules are formed in the subspace of the overall input space which is formed by selecting a suitable subset of input variables so that the this subspace retains the structure of the entire space. As this search is of combinatorial character, we use the technique of genetic optimization to determine the optimal input subspaces. A series of numeric studies exploiting some nonlinear process data and a dataset coming from the machine learning repository provide a detailed insight into the nature of the algorithm and its parameters as well as offer some comparative analysis.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.427-432
    • /
    • 2019
  • In this paper, we propose three approaches to modeling Android malware. The first method involves human security experts for meticulously selecting feature sets. With the second approach, we choose 300 features with the highest importance among the top 99% features in terms of occurrence rate. The third approach is to combine multiple models and identify malware through weighted voting. In addition, we applied a novel method of eliminating permission information which used to be regarded as a critical factor for distinguishing malware. With our carefully generated feature sets and the weighted voting by the ensemble algorithm, we were able to reach the highest malware detection accuracy of 97.8%. We also verified that discarding the permission information lead to the improvement in terms of false positive and false negative rates.

A Feature Set Selection Approach Based on Pearson Correlation Coefficient for Real Time Attack Detection (실시간 공격 탐지를 위한 Pearson 상관계수 기반 특징 집합 선택 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.59-66
    • /
    • 2018
  • The performance of a network intrusion detection system using the machine learning method depends heavily on the composition and the size of the feature set. The detection accuracy, such as the detection rate or the false positive rate, of the system relies on the feature composition. And the time it takes to train and detect depends on the size of the feature set. Therefore, in order to enable the system to detect intrusions in real-time, the feature set to beused should have a small size as well as an appropriate composition. In this paper, we show that the size of the feature set can be further reduced without decreasing the detection rate through using Pearson correlation coefficient between features along with the multi-objective genetic algorithm which was used to shorten the size of the feature set in previous work. For the evaluation of the proposed method, the experiments to classify 10 kinds of attacks and benign traffic are performed against NSL_KDD data set.

  • PDF

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.

Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine (조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측)

  • Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.127-133
    • /
    • 2019
  • Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.

Development of an Algorithm for Wearable sensor-based Situation Awareness Recognition System for Mariners (해양사고 절감을 위한 웨어러블 센서 기반 항해사 상황인지 인식 기법 개발)

  • Hwang, Taewoong;Youn, Ik-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.395-397
    • /
    • 2019
  • Despite technical advance, human error is the main reason for maritime accidents. To ensure a safety of maritime transporting environment, technical and methodological improvement to react to various types of maritime accidents should be developed instead of ambiguously anticipating maritime accidents due to human errors. Survey, questionnaires, and interview have been routinely applied to understand objective human lookout pattern differences in various navigational situations. Although the descriptive methodology helps systematically categorizing different patterns of human behavior to avoid accidents, the subjective methods limit to objectively recognize physical behavior patterns during navigation. The purpose of the study is to develop an objective lookout pattern detection system using wearable sensors in the simulated navigation environment. In the simulated maritime navigation environment, each participant performed a given navigational situation by wearing the wearable sensors on the wrist, trunk, and head. Activity classification algorithm that was developed in the previous navigation activity classification research was applied. The physical lookout behavior patterns before and after situation-aware showed distinctive patterns, and the results are expected to reduce human errors of navigators.

  • PDF

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.