• Title/Summary/Keyword: Machine data analysis

Search Result 2,237, Processing Time 0.03 seconds

1D CNN and Machine Learning Methods for Fall Detection (1D CNN과 기계 학습을 사용한 낙상 검출)

  • Kim, Inkyung;Kim, Daehee;Noh, Song;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • In this paper, fall detection using individual wearable devices for older people is considered. To design a low-cost wearable device for reliable fall detection, we present a comprehensive analysis of two representative models. One is a machine learning model composed of a decision tree, random forest, and Support Vector Machine(SVM). The other is a deep learning model relying on a one-dimensional(1D) Convolutional Neural Network(CNN). By considering data segmentation, preprocessing, and feature extraction methods applied to the input data, we also evaluate the considered models' validity. Simulation results verify the efficacy of the deep learning model showing improved overall performance.

Correlation Analysis of Airline Customer Satisfaction using Random Forest with Deep Neural Network and Support Vector Machine Model

  • Hong, Sang Hoon;Kim, Bumsu;Jung, Yong Gyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • There are many airline customer evaluation data, but they are insufficient in terms of predicting customer satisfaction in practice. In particular, they are generally insufficient in case of verification of data value and development of a customer satisfaction prediction model based on customer evaluation data. In this paper, airline customer satisfaction analysis is conducted through an experiment of correlation analysis between customer evaluation data provided by Google's Kaggle. The difference in accuracy varied according to the three types, which are the overall variables, the top 4 and top 8 variables with the highest correlation. To build an airline customer satisfaction prediction model, they are applied to three classification algorithms of Random Forest, SVM, DNN and conduct a classification experiment. They are divided into training data and verification data by 7:3. As a result, the DNN model showed the lowest accuracy at 86.4%, while the SVM model at 89% and the Random Forest model at 95.7% showed the highest accuracy and performance.

Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns

  • HyunKyoung Kim;Hyo-Gyoung Kwak;Ju-Young Hwang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.625-637
    • /
    • 2023
  • The application of ML approaches in determining the resisting capacity of fire damaged RC columns is introduced in this paper, on the basis of analysis data driven ML modeling. Considering the characteristics of the structural behavior of fire damaged RC columns, the representative five approaches of Kernel SVM, ANN, RF, XGB and LGBM are adopted and applied. Additional partial monotonic constraints are adopted in modelling, to ensure the monotone decrease of resisting capacity in RC column with fire exposure time. Furthermore, additional suggestions are also added to mitigate the heterogeneous composition of the training data. Since the use of ML approaches will significantly reduce the computation time in determining the resisting capacity of fire damaged RC columns, which requires many complex solution procedures from the heat transfer analysis to the rigorous nonlinear analyses and their repetition with time, the introduced ML approach can more effectively be used in large complex structures with many RC members. Because of the very small amount of experimental data, the training data are analytically determined from a heat transfer analysis and a subsequent nonlinear finite element (FE) analysis, and their accuracy was previously verified through a correlation study between the numerical results and experimental data. The results obtained from the application of ML approaches show that the resisting capacity of fire damaged RC columns can effectively be predicted by ML approaches.

A Study on the Establishment of the IDS Using Machine Learning (머신 러닝을 활용한 IDS 구축 방안 연구)

  • Kang, Hyun-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Computing systems have various vulnerabilities to cyber attacks. In particular, various cyber attacks that are intelligent in the information society have caused serious social problems and economic losses. Traditional security systems are based on misuse-based technology, which requires the continuous updating of new attack patterns and the real-time analysis of vast amounts of data generated by numerous security devices in order to accurately detect. However, traditional security systems are unable to respond through detection and analysis in real time, which can delay the recognition of intrusions and cause a lot of damage. Therefore, there is a need for a new security system that can quickly detect, analyze, and predict the ever-increasing cyber security threats based on machine learning and big data analysis models. In this paper, we present a IDS model that combines machine learning and big data technology.

A Study on Predicting Cryptocurrency Distribution Prices Using Machine Learning Techniques (머신러닝 기법을 활용한 암호화폐 유통 가격 예측 연구)

  • KIM, Han-Min;KIM, Hoik
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.93-101
    • /
    • 2019
  • Purpose: Blockchain technology suggests ways to solve the problems in the existing industry. Among them, Cryptocurrency system, which is an element of Blockchain technology, is a very important factor for operating Blockchain. While Blockchain cryptocurrency has attracted attention, studies on cryptocurrency prices have been mainly conducted, however previous studies mainly conducted on Bitcoin prices. On the other hand, in the context of the creation and trading of various cryptocurrencies based on the Blockchain system, little research has been done on cryptocurrencies other than Bitcoin. Hence, this study attempts to find variables related to the prices of Dash, Litecoin, and Monero cryptocurrencies using machine learning techniques. We also attempt to find differences in the variables related to the prices for each cryptocurrencies and to examine machine learning techniques that can provide better performance. Research design, data, and methodology: This study performed Dash, Litecoin, and Monero price prediction analysis of cryptocurrency using Blockchain information and machine learning techniques. We employed number of transactions in Blockchain, amount of generated cryptocurrency, transaction fees, number of activity accounts in Blockchain, Block creation difficulty, block size, umber of created blocks as independent variables. This study tried to ensure the reliability of the analysis results through 10-fold cross validation. Blockchain information was hierarchically added for price prediction, and the analysis result was measured as RMSE and MAPE. Results: The analysis shows that the prices of Dash, Litecoin and Monero cryptocurrency are related to Blockchain information. Also, we found that different Blockchain information improves the analysis results for each cryptocurrency. In addition, this study found that the neural network machine learning technique provides better analysis results than support-vector machine in predicting cryptocurrency prices. Conclusion: This study concludes that the information of Blockchain should be considered for the prediction of the price of Dash, Litecoin, and Monero cryptocurrency. It also suggests that Blockchain information related to the price of cryptocurrency differs depending on the type of cryptocurrency. We suggest that future research on various types of cryptocurrencies is needed. The findings of this study can provide a theoretical basis for future cryptocurrency research in distribution management.

Correlation Analysis of Dataset Size and Accuracy of the CNN-based Malware Detection Algorithm (CNN Mobile Net 기반 악성코드 탐지 모델에서의 학습 데이터 크기와 검출 정확도의 상관관계 분석)

  • Choi, Dong Jun;Lee, Jae Woo
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.

Predictive Analysis of Problematic Smartphone Use by Machine Learning Technique

  • Kim, Yu Jeong;Lee, Dong Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.213-219
    • /
    • 2020
  • In this paper, we propose a classification analysis method for diagnosing and predicting problematic smartphone use in order to provide policy data on problematic smartphone use, which is getting worse year after year. Attempts have been made to identify key variables that affect the study. For this purpose, the classification rates of Decision Tree, Random Forest, and Support Vector Machine among machine learning analysis methods, which are artificial intelligence methods, were compared. The data were from 25,465 people who responded to the '2018 Problematic Smartphone Use Survey' provided by the Korea Information Society Agency and analyzed using the R statistical package (ver. 3.6.2). As a result, the three classification techniques showed similar classification rates, and there was no problem of overfitting the model. The classification rate of the Support Vector Machine was the highest among the three classification methods, followed by Decision Tree and Random Forest. The top three variables affecting the classification rate among smartphone use types were Life Service type, Information Seeking type, and Leisure Activity Seeking type.

Exploring the Predictive Variables of Government Statistical Indicators on Retail sales Using Machine Learning: Focusing on Pharmacy (머신러닝을 이용한 정부통계지표가 소매업 매출액에 미치는 예측 변인 탐색: 약국을 중심으로)

  • Lee, Gwang-Su
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.125-135
    • /
    • 2022
  • This study aims to explore variables using machine learning and provide analysis techniques suitable for predicting pharmacy sales whether government statistical indicators built to create an industrial ecosystem based on data, network, and artificial intelligence affect pharmacy sales. Therefore, this study explored predictive variables and performance through machine learning techniques such as Random Forest, XGBoost, LightGBM, and CatBoost using analysis data from January 2016 to December 2021 for 28 government statistical indicators and pharmacies in the retail sector. As a result of the analysis, economic sentiment index, economic accompanying index circulation change, and consumer sentiment index, which are economic indicators, were found to be important variables affecting pharmacy sales. As a result of examining the indicators MAE, MSE, and RMSE for regression performance, random forests showed the best performance than XGBoost, LightGBM, and CatBoost. Therefore, this study presented variables and optimal machine learning techniques that affect pharmacy sales based on machine learning results, and proposed several implications and follow-up studies.

A Study of Aggressive Driver Detection Combining Machine Learning Model and Questionnaire Approaches (기계학습 모델과 설문결과를 융합한 공격적 성향 운전자 탐색 연구)

  • Park, Kwi Woo;Park, Chansik
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • In this paper, correlation analysis was performed between questionnaire and machine learning based aggressive tendency measurements. this study is part of a aggressive driver detection using machine learning and questionnaire. To collect two types tendency from questionnaire and measurements system, we constructed experiments environments and acquired the data from 30 drivers. In experiment, the machine learning based aggressive tendency measurements system was designed using a driver behavior detection model. And the model was constructed using accelerate and brake position data and hidden markov model method through supervised learning. We performed a correlation analysis between two types tendency using Pearson method. The result was represented to high correlation. The results will be utilize for fusing questionnaire and machine learning. Furthermore, It is verified that the machine learning based aggressive tendency is unique to each driver. The aggressive tendency of driver will be utilized as measurements for advanced driver assistance system such as attention assist, driver identification and anti-theft system.

A Study on the Use of Machine Learning Models in Bridge on Slab Thickness Prediction (머신러닝 기법을 활용한 교량데이터 설계 시 슬래브두께 예측에 관한 연구)

  • Chul-Seung Hong;Hyo-Kwan Kim;Se-Hee Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2023
  • This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process