• 제목/요약/키워드: Machine Vision System

검색결과 571건 처리시간 0.027초

머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (2) (Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (2))

  • 신동원
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.96-104
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The centers of fiducial marks are obtained by using moment, gradient method. The first method is calculating the centroid by using first moment of blob, and the latter method is calculating the center of the circle whose equation is obtained by curve-fitting the boundaries of fiducial mark. The operating system used to implement the whole set-up is carried in Window 98 (or NT) environment. Finally we implemented this system to PCB screen printer.

멀티센서 시스템을 이용한 3차원 형상의 기상측정에 관한 연구 (A Study on the 3-dimensional feature measurement system for OMM using multiple-sensors)

  • 권양훈;윤길상;조명우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.158-163
    • /
    • 2002
  • This paper presents a multiple sensor system for rapid and high-precision coordinate data acquisition in the OMM (On-machine measurement) process. In this research, three sensors (touch probe, laser, and vision sensor) are integrated to obtain more accurate measuring results. The touch-type probe has high accuracy, but is time-consuming. Vision sensor can acquire many point data rapidly over a spatial range but its accuracy is less than other sensors. Also, it is not possible to acquire data for invisible areas. Laser sensor has medium accuracy and measuring speed among the sensors, and can acquire data for sharp or rounded edge and the features with very small holes and/or grooves. However, it has range- constraints to use because of its system structure. In this research, a new optimum sensor integration method for OMM is proposed by integrating the multiple-sensor to accomplish mote effective inspection planning. To verify the effectiveness of the proposed method, simulation and experimental works are performed, and the results are analyzed.

  • PDF

머신비전을 이용한 FPC의 자동정렬 및 장착 (Automatic Alignment and Mounting of FPCs Using Machine Vision)

  • 신동원
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.24-30
    • /
    • 2007
  • The FPCs(Flexible Printed Circuit) are currently used in several electronic products like digital cameras, cellular phones because of flexible material characteristics. Because the FPC is usually small size and flexible, only one FPC should not enter chip mounting process, instead, several FPCs are placed on the large rigid pallette and enter into the chip mounting process. Currently the job of mounting FPC on the pallette is carried by totally manual way. Thus, the goals of the research is develop the automatic machine of FPC mounting on pallette using vision alignment. Instead of using two cameras or using moving one camera, the proposed vision system with only one fixed camera is adopted. Moreover, the two picker heads which can handle two FPCs simultaneously are used to make process time shortened. The procedure of operation is firstly to measure alignment error of FPC, correct alignment errors, and finally mount well-aligned FPC on the pallette. The vision technology is used to measure alignment error accurately, and precision motion control is used in correcting errors and mounting FPC.

  • PDF

웨이퍼 본딩 공정을 위한 3채널 비전 얼라이너 개발 (Development of The 3-channel Vision Aligner for Wafer Bonding Process)

  • 김종원;고진석
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.29-33
    • /
    • 2017
  • This paper presents a development of vision aligner with three channels for the wafer and plate bonding machine in manufacturing of LED. The developed vision aligner consists of three cameras and performs wafer alignment of rotation and translation, flipped wafer detection, and UV Tape detection on the target wafer and plate. Normally the process step of wafer bonding is not defined by standards in semiconductor's manufacturing which steps are used depends on the wafer types so, a lot of processing steps has many unexpected problems by the workers and environment of manufacturing such as the above mentioned. For the mass production, the machine operation related to production time and worker's safety so the operation process should be operated at one time with considering of unexpected problem. The developed system solved the 4 kinds of unexpected problems and it will apply on the massproduction environment.

  • PDF

용접 이음 추적시스템의 응용 (The Application of the Welding Joint Tracking System)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.92-99
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding systems, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, novel presented, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.

LCD 결함 검출을 위한 머신 비전 알고리즘 연구 (Study on Machine Vision Algorithms for LCD Defects Detection)

  • 정민철
    • 반도체디스플레이기술학회지
    • /
    • 제9권3호
    • /
    • pp.59-63
    • /
    • 2010
  • This paper proposes computer visual inspection algorithms for various LCD defects which are found in a manufacturing process. Modular vision processing steps are required in order to detect different types of LCD defects. Those key modules include RGB filtering for pixel defects, gray-scale morphological processing and Hough transform for line defects, and adaptive threshold for spot defects. The proposed algorithms can give users detailed information on the type of defects in the LCD panel, the size of defect, and its location. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.

Controller for Single Line Tracking Autonomous Guidance Vehicle Using Machine Vision

  • Shin, Beom-Soo;Choi, Young-Dae;Ying, Yibin
    • Agricultural and Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.47-53
    • /
    • 2005
  • AMachine vision is a promising tool for the autonomous guidance of farm machinery. Conventional CCD camera for the machine vision needs a desktop PC to install a frame grabber, however, a web camera is ready to use when plugged in the USB port. A web camera with a notebook PC can replace existing camera system. Autonomous steering control system of this research was intended to be used for combine harvester. If the web camera can recognize cut/uncut edge of crop, which will be the reference for steering control, then the position of the machine can be determined in terms of lateral offset and heading angle. In this research, a white line was used as a cut/uncut edge of crop for steering control. Image processing algorithm including capturing image in the web camera was developed to determine the desired travel path. An experimental vehicle was constructed to evaluate the system performance. Since the vehicle adopted differential drive steering mechanism, it is steered by the difference of rotation speed between left and right wheels. According to the position of vehicle, the steering algorithm was developed as well. Evaluation tests showed that the experimental vehicle could travel within an RMS error of 0.8cm along the desired path at the ground speed of $9\sim41cm/s$. Even when the vehicle started with initial offsets or tilted heading angle, it could move quickly to track the desired path after traveling $1.52\sim3.5m$. For turning section, i.e., the curved path with curvature of 3 m, the vehicle completed its turning securely.

  • PDF

환경영향을 최소화한 비전 시스템을 이용한 미세공구의 상태 감시 기술 (Tool Monitoring System using Vision System with Minimizing External Condition)

  • 김선호;백운보
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.142-147
    • /
    • 2012
  • Machining tool conditions directly affect to quality of product and productivity of manufacturing. Many researches performed for tool condition monitoring in machining process to improve quality and productivity. Conventional methods use characteristics of signal for cutting force, motor current consumption, vibration of machine tools and machining sound. Recently, diameter of machining tool is become smaller for minimizing of mechanical parts. Tool condition monitoring using conventional methods are relatively difficult because micro machining using small diameter tool has low machining load and high cutting speed. These days, the direct monitoring for tool conditions using vision system is performed actively. But, vision system is affected by external conditions such as back ground of image and illumination. In this study, minimizing technology of external conditions using distribution analysis of image data are developed in micro machining using small diameter drill and tap. The image data is gathered from vision system. Several sets of experiment results are performed to verify the characteristics of the proposed machining technology.