• 제목/요약/키워드: Machine Tools Diagnosis

검색결과 43건 처리시간 0.018초

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구 (Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning)

  • 백설경;박혜진;강성홍;최준영;박종호
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.217-230
    • /
    • 2019
  • 본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.

건강보험 청구 데이터를 활용한 머신러닝 기반유방암 환자의 생존 여부 예측 (The Prediction of Survival of Breast Cancer Patients Based on Machine Learning Using Health Insurance Claim Data)

  • 이덕규;변경근;이형동;신선희
    • 한국산업정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.1-9
    • /
    • 2023
  • 유방암 관련 기존 AI 연구는 보조적인 진단 예측이나 임상적 요인에 따른 진료 결과를 예측하는 주제가 많았다. 또한 연구기관의 코호트 자료나 일부 환자 자료를 이용하는 경우가 대부분이었다. 본 논문에서는 건강보험심사평가원이 보유하고 있는 전 국민 유방암 환자의 전수 데이터를 활용하여 유방암 환자의 40~50대와 다른 연령대 간의 생존 여부 예측과 생존 여부에 미치는 요인의 차이점을 분석했다. 그 결과, 환자들의 생존 여부 예측 정밀도는 40~50대가 평균 0.93으로 60~80대 0.86 보다 높았으며, 요인에 있어서도 40~50대는 치료횟수(46%)가, 60~80대는 나이(32%)의 변수 중요도가 제일 높았다. 기존 연구와 성능 비교 결과, 평균 정밀도가 0.90으로 기존 논문의 정밀도 0.81보다 높았다. 적용 알고리즘별 성능 비교 결과, 의사결정나무(Decision Tree), 랜덤포레스트(Random Forest) 및 그래디언트부스팅(Gradient Boosting)의 전체 평균 정밀도는 0.90, 재현율은 1.0으로 연령대 그룹 내에서 동일하였으며, 다층퍼셉트론(Multi-Layer Perceptron)의 정밀도는 0.89, 재현율은 1.0 이었다. 심평원의 전 국민 심사청구 빅데이터 가치 활용을 제고하기 위해 비전문가용 머신러닝 자동화(Auto ML) 도구를 사용한 더 많은 연구가 진행되기를 바란다.