• 제목/요약/키워드: Machine Tool Structure

검색결과 460건 처리시간 0.025초

5축 혼합형 공작기계의 정밀도 향상 연구 (Accuracy Improvement of a 5-axis Hybrid Machine Tool)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.

머시닝센터에서 구조물 진동과 응답성을 고려한 이송계 최적화 연구 (The Optimization of Feed System by the Dynamics of Structure and Responsibility)

  • 김성현;윤강섭;이만형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.365-369
    • /
    • 2002
  • This paper introduces that the machine tools's feed system optimizes by modeling for simulation and adjusting drive control parameter. The first method is frequency response of speed loop with design parameter by use of MATLAB application, in order that other axis can do equal to bandwidth. The second meted uses various sensor for analyzing machine tools's structure and adjustes jirk limitter.

  • PDF

공작기계 오차 모델링과 보정에 관한 연구 (On Error Modeling and Compensation of Machine Tools)

  • 송일규;최영
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.98-107
    • /
    • 1996
  • The use of composite hyperpatch model is proposed to predict a machine tool positional error over the entire work space. This is an appropriate representation of the distorted work space. This model is valid for any configuration of 3-axis machine tool. Tool position, which is given NC data or CL data, contains error vector in actual work space. In this study, off-line compensation scheme was investigated for tool position error due to inaccuracy in machine tool structure. The error vector in actual work space is corrected by the error model using Newton-Raphson method. The proposed error compensation method shows the possibility of improving machine accuracy at a low cost.

  • PDF

공작기계구조물의 열적 거동 해석에 관한 연구 (Thermal Behavior Analysis of Machine Tool Structures using a Predictor-Corrector Method)

  • 이영우;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.78-81
    • /
    • 2002
  • To achieve high precision machine totals with high speed, it is needed to develop excellent rigidity statically, dynamically and thermally as well. In this view the chief things that thermal deformation of machine tool structure is directly related to high precision. And thermal behavior for transmission procedure have an effect on high precision. It is needed to exact temperature distribution of each members and all contact elements included for machine tool structure. This paper deals with thermal behavior caused by temperature variation in a high speed feeding process. At this procedure of temperature distribution is estimated using a Predictor-Corrector Method.

  • PDF

섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구 (Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete)

  • 김대일;장승환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF

공작기계구조물의 동강성 해석 및 동적 최적화에 관한 연구 (Dynamic Compliance Analysis and Optimization of Machine Structures)

  • 이영우;성활경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2001
  • Recently, as the demand for high efficiency, multi function machine tools is increasing, domestic machine tool industries are investing in research and development for precision machine tools with high speed. This trend is closely correlated with the design technique which is necessary to make new type machine tool compatible with new production system. To achieve high precision, high speed machine tools with reduced chatter, it is needed to develop dynamically rigid structure. In this paper, dynamic optimization of machine structure is presented. At this procedure of dynamic design, dynamic compliance is minimized using Simple Genetic Algorithm(SGA)

  • PDF

미소가공을 위한 초정밀 밀링머신 설계에 관한 연구 (A Study on the Precision Milling Machine Design for Micro Machining)

  • 황준;지권구;정의식
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications. This study can also be provided a basic knowledge for further research of micro factory development.

  • PDF

공작기계 고장 진단 전문가 시스템 개발 (Development of an Expert System for Diagnosing Machine Tool Failures)

  • 서동규;강무진
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.217-224
    • /
    • 1999
  • Trouble shooting of modern machine tools equipped with sophisticated electronic as well as mechanical parts is so difficult that it is usually depends upon the experience and accumulated knowledge of the diagnosing persons. On the other hand, tool users are scattered in wide area, which makes it expensive for a machine tool maker to run a vast service network. An unmanned diagnosis system to which users can have access at all times could be an efficient alternative. For this purpose, a rule-based expert system for diagnosing machine tools is developed. This paper describes the structure of diagnostic knowledge, the rule firing mechanism, the diagnosis flow, and user query process. An example shows the feasibility of problem solving on site without help of a service expert from machine tool maker.

  • PDF

멀티 툴 조각기 및 기계 제어 소프트웨어 개발 (Development of a Multi-tool Carving Machine and a Machine Control Software)

  • 김응곤
    • 한국전자통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.755-760
    • /
    • 2019
  • 본 논문은 기존 열선조각기, 열선 커팅기, 스핀들을 통합한 멀티 툴 조각기 개발을 통해 복잡한 구조의 형상도 손쉽고 빠르게 제작할 수 있도록 하였다. 또한 G-Code가 단일 툴에만 적용되는 문제점을 해결하고 기존 3D 모델링 툴로써 관리할 수 없는 기계의 세부 동작들을 제어할 수 있도록 소프트웨어를 개발하였다.

5축 공작기계의 고강성 구조설계에 관한 연구 (Study on Structure Design of High-Stiffness for 5 - Axis Machining Center)

  • 홍종필;공병채;최성대;최현진;이달식
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.7-12
    • /
    • 2011
  • This study covers the optimum design of the 5-axis machine tool. In addition, the intelligent control secures structural stability through the optimum design of the structure of the 5-axis machine center, main spindle, and the tilting index table. The big requirement, like above, ultimately leads to speed-up operation. And this is inevitable to understand the vibration phenomenon and its related mechanical phenomenon in terms of productivity and its accuracy. In general, the productivity is correlated with the operation speed and it has become bigger by its vibration scale and the operation speed so far. Vibration phenomenon and its heat-transformation of the machine is naturally occurred during the operation. If these entire machinery phenomenons are interpreted through the constructive understanding and the interpretation of the naturally produced vibration and heat-transformation, it would be very useful to improve the rapidity and its stability of the machine operation indeed. In this dissertation, the problems of structure through heating, stability, dynamic aspect and safety about intelligent 5-wheel machine tool are discovered to examine. All these discoveries are applied to the structure in order to enhance the density of it. It aims to improve the stability.