• Title/Summary/Keyword: Machine Tool Structure

Search Result 460, Processing Time 0.032 seconds

경면 연삭기 베드를 위한 레진 콘크리트에 관한 연구

  • 김현석;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.108-113
    • /
    • 1993
  • The material for the machine tool structure should have high static stiffiness and damping in its property to improve both the static and dynamic performances. The static stiffness of a machine tool can be inceased by using either higher modulus material in the structure of a machine tool. However, the machine tool structrue with high stiffness but low damping is vulnerable to vibration at the resonance frequencies of the structure . For the high precision and highsped machine tool structure, therefore, the high damping capacity is most important in order to suppress vibration. The damping of a machine tool can not be increased by increasing the static stiffness. The best way to increase the damping capacity of the machine tool structure is to use a composite material which is composed of on material with high stiffness with low damping and another material with low stiffness with high damping. Therefore, in this paper, the bed of the ultra high precision grinding machine for mirror surface machining of brittle materials such as ceramics and composite materials was designed and manufactured with the epoxy concrete material. The epoxy concrete material was prepared by mixing epoxy resin with different size sands and gravels. The modulus, compressive strength, coefficient of thermal expansion, specific heat, and damping factor were measured by varying the compaction ratio, sizes and contents of the ingredients to assess the effect of the processing parameters on the mechanical properties of the material. Based of the measured properties, the prototype epoxy resin concrete bed for the mirror surface CNC grinding machine was designed and manufactured.

Design and Manufacture of Polymer Concrete Machine Tool Bed (폴리머 콘크리트 공작기계 베드의 설계와 제작)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.32-36
    • /
    • 2002
  • High-speed movement and high-precision machining are the two most important requirements of present machine tool structures to reduce machining time and to increase the precision of products in various industrial fields such as semiconductor, automobile, and mold fabrication. The high speed operation of machine tools tue usually restricted not only by the low stiffness but also by the low damping of machine tool structures, which induces vibration during high speed machining. If the damping of machine tool structures is low, self induced or regenerative vibrations are bound to occur at high speed operation because the natural frequencies of machine tool structures can not be increased indefinitely. Therefore, the high damping capacity of a machine tool structure is an important factor for high speed machine tool structures. Polymer concrete has high potential for machine tool bed due to its good damping characteristics. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was desisted and manufactured for a high-speed gantry-type milling machine through static and dynamic analyses using finite element method. Then the dynamic characteristics were tested experimentally.

  • PDF

Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed (Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

Thermal Characteristic Estimation of NC Machining Center Bed following Rib Structure (리브 구조에 따른 머시닝센터 베드의 열적 특성 평가)

  • Kim, Yang-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.746-752
    • /
    • 2010
  • Rib structure has been used to bed and column of machine tool to heighten weight stiffness ratio, cost performance and weight saving. In this paper the bed rib structure was estimated with thermal characteristics. Using superposition principle, machine tool designer can describe every complicated heat generation in the machine tool thermal source. As thermal characteristics, thermal deformation of guide rail and column and Maximum-minimum temperature variation were selected. The size, configuration and direction against the thermal loading surface operated to the thermal characteristics. The DB chart was made following rib structure estimating thermal characteristics. With superposition principle and DB chart, machine tool designer can prognosticate the thermal characteristics without FEM analysis to every bed rib structure.

Parametric Study on the Design of Sandwich Beams and Plates for Machine Tool Structures (공작기계를 위한 보와 평판의 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim, Dae-Il;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2006
  • In this paper, polymer composites based sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure of machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance bending stiffnesses in two major directions at the same time. Dynamic robustness of a machine tool structure is investigated using modal analysis. From the results optimal configuration and materials for high precesion machine tools are proposed. And the plate was made of fiber reforced composite material and PVC foam.

Development of a miniaturized machine tool for machining a micro/meso scale structure (마이크로 및 메조 가공을 위한 소형공작기계 개발)

  • 박성령;이재하;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1907-1910
    • /
    • 2003
  • Miniaturized machine tool can be used to produce 3D features based on CNC and PC-NC technology in the micro/meso scale. Wide applications of CNC technology are developed and there are lots of know-hows in the cutting process and their CNC application. It helps micro/meso scale structure to machine components, which can be used directly for practical applications. In the present research, as the machine tool is miniaturized, the manufacturing machine tools costs less when compared to the equipment used in other micromachining technologies. Moreover, with advancement of micro tool technology, the cutting process can be used to produce micro/meso scale parts. In conclusion, the proposed system can reduce the cost by utilizing the current machining technology, and as a result, complex micro/meso parts can be produced efficiently with high productivity.

  • PDF

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness (정강성을 고려한 5축 복합가공기의 리브 구조 최적설계)

  • Kim, Seung-Gi;Kim, Ji-Hoon;Kim, Se-Ho;Youn, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

Design Alteration of a Milling Machine Structure for the Improved Stability (동적 안정성 향상을 위한 밀링 머신의 구조개선)

  • Ro, Seung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.72-78
    • /
    • 2006
  • Inherent in machine tool structures are the vibrations which are generated by rotating parts such as motors, spindles and chucks. The vibrations not only hurt the precision machining but also damage the structures, and become more serious with time. Many of the old machine tools show severe vibrations for the desired accuracy of the modern industries. It is too much of a waste, however, to get rid of them as scraps. There have been many researches in order to suppress the vibrations of old machine tool structures using the tool post which utilizes actuators to compensate the existing vibrations and using the dampers or absorbers attached to some critical parts. In this paper, the dynamic properties are analyzed to obtain the natural frequencies and mode shapes of a machine tool structure which reflect the main reasons of the biggest vibrations under the given operating conditions. And the feasibility of improving the stability of the structure has been investigated with minor design changes and expenses. The result of the study shows that simple changes based on proper system identification can considerably improve the stability of the machine tool structure.

  • PDF

Manufacture of light-weight machine tool structures using composite materials (복합재료를 이용한 경량 공작기계 구조물 제작에 관한 연구)

  • Suh, Jung-Do;Lee, Dai-Gil;Kim, Hak-Sung;Kim, Jong-Min;Choi, Jin-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.189-196
    • /
    • 2001
  • Machine tools of high-speed and high-precision are required for various fields of industry such as semiconductor, automobile, mold fabrication and so on. Light-weight machine tool structure is essential for reduction of production time through rapid transportation. Also, high damping capacity of the structure is required to obtain precise products without vibration during manufacturing. Composite materials have high potential for machine tool structures due to its high specific stiffness and good damping characteristics. In this study, the design and the manufacture of a hybrid machine tool structure using composite materials was attempted and the damping capacity was investigated experimentally.

  • PDF