• Title/Summary/Keyword: Machine System

Search Result 8,774, Processing Time 0.047 seconds

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Consideration of Human Operators in Man-Machine Systems

  • Jin, Jae-Hyun;Ahn, Sung-Ho;Park, Byung-Suk;Yoon, Ji-Sup;Jung, Jae-Hoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2471-2474
    • /
    • 2003
  • This paper focuses on the stability and operability of a man-machine system considering a human operator. Some papers' main interest has been the stability only, but the operability such as fatigue is also the other main interest. In a man-machine system, feelings such as motional, visual, and kinesthetic are important since those enable operators to work easily or fatigue operators. A model of a man-machine system has been developed. Motional, visual, and kinesthetic feelings may be considered as feedbacked sensor signals. We also have quantified the degree of fatigue with respect to reference operation. This is a performance index to be optimized. Several methods are presented to optimize the degree of fatigue and the stability of the integrated system. Examples are presented to show that the usefulness of the proposed modeling method and fatigue mitigating algorithm.

  • PDF

A Bidirectional Korean-Japanese Statistical Machine Translation System by Using MOSES (MOSES를 이용한 한/일 양방향 통계기반 자동 번역 시스템)

  • Lee, Kong-Joo;Lee, Song-Wook;Kim, Jee-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.683-693
    • /
    • 2012
  • Recently, statistical machine translation (SMT) has received many attention with ease of its implementation and maintenance. The goal of our works is to build bidirectional Korean-Japanese SMT system by using MOSES [1] system. We use Korean-Japanese bilingual corpus which is aligned per sentence to train the translation model and use a large raw corpus in each language to train each language model. The proposed system shows results comparable to those of a rule-based machine translation system. Most of errors are caused by noises occurred in each processing stage.

A Study on The Actual Application of the Least Order Load Observer and Effective Online Inertia Identification Algorithm for High Performance Linear Motor Positioning System (고성능 선형전동기 위치제어 시스템에 대한 최소차원 부하관측기의 실제적 구현 및 이를 이용한 실시간 관성추정기의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.730-738
    • /
    • 2007
  • As well known when the linear machine is operated between two points repeatedly under positioning control, there are various positioning error at the moment of zero speed owing to the non-linear disturbance like as unpredictable friction force. To remove this positioning error, a simple least order disturbance observer is introduced and is actually implemented in this study. Due to this simple algorithm the over-all machine system can be modified to simple arbitrary given one-mass load without any disturbance. So, the total construction process for positioning control system is much easier than old one. Moreover, to generate a proper effective position profile with the limited actual machine force, a very powerful on-line mass identification algorithm using the load force estimator is presented. In the proposed mass identification algorithm, the exact load mass can be calculated during only one moving stage under a normally generated position profile. All presented algorithm is verified with experimental result with commercial linear servo machine system.

Determination of the Optimal Configuration of Operation Policies in an Integrated-Automated Manufacturing System Using the Taguchi Method and Simulation Experiments (다구치방법과 시뮬레이션을 이용한 통합된 자동생산시스템의 최적운영방안의 결정)

  • Lim, Joon-Mook;Kim, Kil-Soo;Sung, Ki-Seok
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.23-40
    • /
    • 1998
  • In this paper, a method to determine the optimal configuration of operating policies in an integrated-automated manufacturing system using the Taguchi method and computer simulation experiments is presented. An integrated-automated manufacturing system called direct-input-output manufacturing system(DIOMS) is described. We only consider the operational aspect of the DIOMS. Four operating policies including input sequencing control, dispatching rule for the storage/retrieval(S/R) machine, machine center-based part type selection rule, and storage assignment policy are treated as design factors. The number of machine centers, the number of part types, demand rate, processing time and the rate of each part type, vertical and horizontal speed of the S/R machine, and the size of a local buffer in the machine centers are considered as noise factors in generating various manufacturing system environment. For the performance characteristics, mean flow time and throughput are adopted. A robust design experiment with inner and outer orthogonal arrays are conducted by computer simulation, and an optimal configuration of operating policies is presented which consists of a combination of the level of each design factor. The validity of the optimal configurations is investigated by comparing their signal-to-noise ratios with those obtained with full factorial designs.

  • PDF

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF

Study on Memory Performance Improvement based on Machine Learning (머신러닝 기반 메모리 성능 개선 연구)

  • Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.615-619
    • /
    • 2021
  • This study focuses on memory systems that are optimized to increase performance and energy efficiency in many embedded systems such as IoT, cloud computing, and edge computing, and proposes a performance improvement technique. The proposed technique improves memory system performance based on machine learning algorithms that are widely used in many applications. The machine learning technique can be used for various applications through supervised learning, and can be applied to a data classification task used in improving memory system performance. Data classification based on highly accurate machine learning techniques enables data to be appropriately arranged according to data usage patterns, thereby improving overall system performance.

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Effect of Agricultural Machine Lighting systems on Drivers Night Visibility (농기계의 등화장치가 운전자의 야간시인성에 미치는 영향)

  • Choi, Seung hyun;Lee, Sung yeol;Jang, Taek young;Do, Myung sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.25-35
    • /
    • 2017
  • This study aimed to analyze a driver's night visibility, according to the installation of a lighting system for driving an agricultural machine during the night time. For the night visibility analysis, a luminance measurement test on the lighting system and a gaze duration measurement test through eye movement measurement devices were carried out. In the luminance measurement test, the increase of luminance was confirmed as relative distance from an agricultural machine was closer and the conditions of the lighting equivalence are improved. Also the gaze duration measurement test, total gaze duration from an agricultural machine increased, as the conditions of the lighting equivalence are improved. In addition, it was identified that the difference in average gaze duration from an agricultural machine was statistically significant as the agricultural machine was driven in high speed. In conclusion, when the lighting system is installed on an agricultural machine, a driver's night visibility from the agricultural machine improves, which is expected to be enormously helpful to the prevention of agricultural machine accidents.

Kinematic calibration for parallel micro machine platform (마이크로 병렬기구 플랫폼의 기구학적 보정)

  • 강득수;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.969-972
    • /
    • 2004
  • This paper describes the mechanism of parallel micro machine platform and its feedback control system for acquiring high accuracy. The parallel micro machine platform that has developed has 5x5x5 work-space and sub-micron accuracy. For the high accuracy, the feedback control system is important but errors in machining and assembling are inevitable. Kinematic calibration is important for this reason. In this paper, various error components are introduced and the effects of error component are analyzed.

  • PDF