• Title/Summary/Keyword: Machine Part

Search Result 1,652, Processing Time 0.033 seconds

Production-distribution Planning in Supply Chain Management Considering Processing Times and Capacity Using Simulation and Optimization Model (시간과 능력을 고려한 공급사슬 경영에서의 생산-분배 계획을 위한 시뮬레이션과 최적화모델의 적용)

  • Sook Han Kim;Young Hae Lee
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.165-173
    • /
    • 2000
  • Analytic models have been developed to solve integrated production-distribution problems in supply chain management (SCM). As one of major constraints in analytic models, capacity, which is the total operation time in this paper has mostly been known or disregarded assuming infinite capacity. Also, as major factors, machine processing time to fabricate or assemble a part or product at a certain machine center in production system and vehicle processing time to deliver a product to a customer by a certain vehicle in distribution system have been fixed and regarded as a static factor, But in the real systems significant differences exit between capacity and the required time to achieve the production-distribution plan and between processing time and consumed time to process a part or product. In this paper, capacity and processing times in the analytic model are considered as dynamic factors and adjusted by the results from independently developed simulation model, which includes general production-distribution characteristics. Through experiments, we obtain the more realistic solutions reflecting stochastic natures by performing the iterative analytic-simulation procedure.

  • PDF

Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization (보간 길이 최적화에 의한 5축밀링 가공속도 향상)

  • So, B.S.;Jung, Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

Development of a CAPP System for Production and Maintenance of Aircraft Parts (항공기 부품의 생산 및 정비를 위한 공정 계획 시스템의 개발)

  • 노경윤;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.83-91
    • /
    • 1999
  • Dynamic characteristic of manufacturing stage is understood and the utilization of each machine is maximized by developing on-line dynamic CAPP system to consider the overloads in the aircraft part manufacturing line. In this paper, a scheme of production planning and scheduling system was proposed through inspection about some predeveloped CAPP system. Developed production planning and scheduling system included process planning module. After precise inspection of some FMS line schema at domestic heavy industry, optimized FMS line was applied to aircraft part manufacturing and repairing factory. By virtue of considering overloads of factory and machine through on-line dynamic CAPP system, the utilization of resources is maximized and manufacturing lead time is minimized.

  • PDF

A Heuristic Algorithm of Cell Forming for Efficient Production Logistics (생산물류 효율화를 위한 셀 형성방법)

  • 김성태
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.255-264
    • /
    • 1996
  • This Paper presents a heuristic algorithm for machine-part group formation considering part production information (Production volume, roution sequence, unit operation time, facility size) in cellular manufacturing logistics system. In general, factory space is restricted within limited size when cells are located. A twofold heuristic algorithm is developed for considering factory space restrictions of located cells. The first phase is a aggregation procedure to minimize inter cell movement for satisfactoring space restriction. The second phase is a rearrangement procedure to maximize line balancing efficiency between machines within the cell and non assigned machine during first phase. Numerical example is presented to verify the efficiency of proposed algorithm.

  • PDF

Human-machine system optimization in nuclear facility systems

  • Corrado, Jonathan K.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3460-3463
    • /
    • 2021
  • Present computing power and enhanced technology is progressing at a dramatic rate. These systems can unravel complex issues, assess and control processes, learn, and-in many cases-fully automate production. There is no doubt that technological advancement is improving many aspects of life, changing the landscape of virtually all industries and enhancing production beyond what was thought possible. However, the human is still a part of these systems. Consequently, as the advancement of systems transpires, the role of humans within those systems will unavoidably continue to adapt as well. Due to the human tendency for error, this technological advancement should compel a persistent emphasis on human error reduction as part of maximizing system efficiency and safety-especially in the context of the nuclear industry. Within this context, as new systems are designed and the role of the human is transformed, human error should be targeted for a significant decrease relative to predecessor systems and an equivalent increase in system stability and safety. This article contends that optimizing the roles of humans and machines in the design and implementation of new types of automation in nuclear facility systems should involve human error reduction without ignoring the essential importance of human interaction within those systems.

A Study on the 5-Axis Machining of End Mill Body with Insert Tip (Insert Tip용 End Mill Body의 5-축 가공에 관한 연구.)

  • 조현덕;박영원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.399-406
    • /
    • 2001
  • This study describes the geometric characteristic and the 5-axis machining method of end mill body with insert tip. The geometry of end mill body is consisted of the flute part and the insert tip part. Thus, this study defines the flute part as ruled surface with constant helix angle and the insert tip part as rectangular plane on general direction. The geometric algorithm and the 5-axis NC part program were calculated by our programmed software and a sampled end mill body was machined on 5-axis machining center equipped with two index tables. The machined end mill body with insert tip was very agreeable to the designed end mill body with insert tip. Thus, the method proposed in this study may be very useful for the machining of end mill body with insert tip.

  • PDF

Provisioning Quantity Determination of Consumable Concurrent Spare Part with Objective Availability Limitation under Cannibalization Allowed (부품재활용이 허용될 때 목표운용가용도 조건을 갖는 소모성 동시조달부품의 구매량 결정)

  • Oh, Geun-Tae;Kim, Myeong-Su
    • Journal of Applied Reliability
    • /
    • v.4 no.2
    • /
    • pp.91-104
    • /
    • 2004
  • In this paper we consider the concurrent spare part(CSP) requirements problem of new equipment system. When a part fails, the part is replaced and the repair of failed part is impossible and cannibalization is allowed. We assume that the failure of a part knows a Poisson process. The operational availability concept in CSP is defined, and derive a formula to calculate the operational availability using expected machine operating time during CSP period. A mathematical model is derived for making an CSP requirement determination subject to the constraint of satisfying any given operational availability limitation and an heuristic solution search procedure is derived. An illustrative example is shown to explain the solution procedure.

  • PDF

Development of the Practical and Adaptive Die of Fixed Stripper Type for Marine Part Sheet Metal Working(part 1)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.35-39
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production parts press working. Part 1 of this study reveals with production part and strip process layout design.

  • PDF

Benchmark Study on Surface Roughness and Mechanical Properties of Rapid Prototypes (쾌속조형부품의 표면거칠기와 기계적 물성치에 관한 비교)

  • Kim Gi-Dae;Kim Jung-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.56-62
    • /
    • 2006
  • Various kinds of rapid prototyping processes are available, such as stereo-lithography apparatus(SLA), fused deposition modeling(FDM), selective laser sintering(SLS), 3 dimensional printing(3DP), and laminated object manufacturing(LOM). In this study, benchmark tests are carried out to obtain detailed informations about surface roughness and mechanical properties of those parts. Although the patterns and roughness averages of part surface are dependent on the surface direction, the roughness of SLA part is the best and that of FDM or 3DP part is the worst. It is shown that FDM part has an advantage in impact strength, SLS(or EOS) part in compressive strength, and LOM part has an advantage in tensile strength and heat resistance, but the change of building direction in FDM and LOM processes severely weakens the tensile and impact strengths.

Effects of Dimension of Part and Structure of Supports on the Shape Error in Stereolithography Process (SL 광조형 공정에서 제작물 치수와 지지대 구조가 형상오차에 미치는 영향)

  • Kim, Gi-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2006
  • During stereolithography processes, the shape errors such as curl distortion and distortion of side face are generated due to the shrinkage of liquid resins. In this study, the effects of dimension of part and structure of supports on the shape error are examined. Cubic specimens which have different thicknesses are manufactured and their deformations are measured with CMM. Thicker part generates smaller curl distortion of top face and larger of bottom face. Also thicker part generates larger distortion of side face until part thickness increases to about 20mm. Larger stiffness of supports which is obtained by shorter spacing of the supports and line type contact instead of point type contact generates smaller shape error of the part.