• Title/Summary/Keyword: Machine Learning Practice

Search Result 91, Processing Time 0.028 seconds

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

A Machine Learning Model Learning and Utilization Education Curriculum for Non-majors (비전공자 대상 머신러닝 모델 학습 및 활용교육 커리큘럼)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • In this paper, a basic machine learning model learning and utilization education curriculum for non-majors is proposed, and an education method using Orange machine learning model learning and analysis tools is proposed. Orange is an open-source machine learning and data visualization tool that can create machine learning models by learning data using visual widgets without complex programming. Orange is a platform that is widely used by non-major undergraduates to expert groups. In this paper, a basic machine learning model learning and utilization education curriculum and weekly practice contents for one semester are proposed. In addition, in order to demonstrate the reality of practice contents for machine learning model learning and utilization, we used the Orange tool to learn machine learning models from categorical data samples and numerical data samples, and utilized the models. Thus, use cases for predicting the outcome of the population were proposed. Finally, the educational satisfaction of this curriculum is surveyed and analyzed for non-majors.

A pilot study using machine learning methods about factors influencing prognosis of dental implants

  • Ha, Seung-Ryong;Park, Hyun Sung;Kim, Eung-Hee;Kim, Hong-Ki;Yang, Jin-Yong;Heo, Junyoung;Yeo, In-Sung Luke
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.395-400
    • /
    • 2018
  • PURPOSE. This study tried to find the most significant factors predicting implant prognosis using machine learning methods. MATERIALS AND METHODS. The data used in this study was based on a systematic search of chart files at Seoul National University Bundang Hospital for one year. In this period, oral and maxillofacial surgeons inserted 667 implants in 198 patients after consultation with a prosthodontist. The traditional statistical methods were inappropriate in this study, which analyzed the data of a small sample size to find a factor affecting the prognosis. The machine learning methods were used in this study, since these methods have analyzing power for a small sample size and are able to find a new factor that has been unknown to have an effect on the result. A decision tree model and a support vector machine were used for the analysis. RESULTS. The results identified mesio-distal position of the inserted implant as the most significant factor determining its prognosis. Both of the machine learning methods, the decision tree model and support vector machine, yielded the similar results. CONCLUSION. Dental clinicians should be careful in locating implants in the patient's mouths, especially mesio-distally, to minimize the negative complications against implant survival.

Validity Analysis of Python Automatic Scoring Exercise-Problems using Machine Learning Models (머신러닝 모델을 이용한 파이썬 자동채점 연습문제의 타당성 분석)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.193-198
    • /
    • 2023
  • This paper analyzed the validity of exercise problems for each unit in Python programming education. Practice questions presented for each unit are presented through an online learning system, and each student uploads an answer code and is automatically graded. Data such as students' mid-term exam scores, final exam scores, and practice questions scores for each unit are collected through Python lecture that lasts for one semester. Through the collected data, it is possible to improve the exercise problems for each unit by analyzing the validity of the automatic scoring exercise problems. In this paper, Orange machine learning tool was used to analyze the validity of automatic scoring exercises. The data collected in the Python subject are analyzed and compared comprehensively by total, top, and bottom groups. From the prediction accuracy of the machine learning model that predicts the student's final grade from the Python unit-by-unit practice problem scores, the validity of the automatic scoring exercises for each unit was analyzed.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Artificial Intelligence based Tumor detection System using Computational Pathology

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2019
  • Pathology is the motor that drives healthcare to understand diseases. The way pathologists diagnose diseases, which involves manual observation of images under a microscope has been used for the last 150 years, it's time to change. This paper is specifically based on tumor detection using deep learning techniques. Pathologist examine the specimen slides from the specific portion of body (e-g liver, breast, prostate region) and then examine it under the microscope to identify the effected cells among all the normal cells. This process is time consuming and not sufficiently accurate. So, there is a need of a system that can detect tumor automatically in less time. Solution to this problem is computational pathology: an approach to examine tissue data obtained through whole slide imaging using modern image analysis algorithms and to analyze clinically relevant information from these data. Artificial Intelligence models like machine learning and deep learning are used at the molecular levels to generate diagnostic inferences and predictions; and presents this clinically actionable knowledge to pathologist through dynamic and integrated reports. Which enables physicians, laboratory personnel, and other health care system to make the best possible medical decisions. I will discuss the techniques for the automated tumor detection system within the new discipline of computational pathology, which will be useful for the future practice of pathology and, more broadly, medical practice in general.

A Study Basic Engineering for Improving the Creative Practice PBL Case (기초 공학의 창의적인 실습 능력 향상을 위한 PBL 적용 사례 연구)

  • Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5396-5402
    • /
    • 2013
  • In this study, one for grades 1 Institute of Foundation Engineering Practice training to enable the creativity of problem-based learning as an alternative (PBL: Problem-Based Learning) training system was applied. The reason for the development of education systems engineering knowledge and practice skills related to the University no basis for first year students in the theory and practice based on the characteristics of the materials used and the tools to use, how to use the machine was to be accomplished. Hands-on training for existing structured learning plan driven by the faculty and students conducted hands-on training in the uniform limits on the ability of the practice has been shown. However, in this study on the basis of PBL learning materials, and the students themselves leading learner-centered practice problems derive and small unit exercises the ability to decide how to proceed on improving the educational process proposes. As a result of these studies, about 30% more than traditional hands-on training to improve the ability of learning respectively.

Prediction of replacement period of shield TBM disc cutter using SVM (SVM 기법을 이용한 쉴드 TBM 디스크 커터 교환 주기 예측)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.641-656
    • /
    • 2019
  • In this study, a machine learning method was proposed to use in predicting optimal replacement period of shield TBM (Tunnel Boring Machine) disc cutter. To do this, a large dataset of ground condition, disc cutter replacement records and TBM excavation-related data, collected from a shield TBM tunnel site in Korea, was built and they were used to construct a disc cutter replacement period prediction model using a machine learning algorithm, SVM (Support Vector Machine) and to assess the performance of the model. The results showed that the performance of RBF (Radial Basis Function) SVM is the best among a total of three SVM classification functions (80% accuracy and 10% error rate on average). When compared between ground types, the more disc cutter replacement data existed, the better prediction results were obtained. From this results, it is expected that machine learning methods become very popularly used in practice in near future as more data is accumulated and the machine learning models continue to be fine-tuned.

Course Design for Mechanical Engineering Applying Case-Based Learning: Manufacturing of Laminator Machine (사례기반학습법을 적용한 기계공학 교과목 설계: 라미네이터 장비 제작)

  • Ryu, Sun-Joong
    • Journal of Engineering Education Research
    • /
    • v.23 no.5
    • /
    • pp.61-67
    • /
    • 2020
  • In the associate degree curriculum of the department of mechanical engineering, the results of the study are presented on the structure and content of a subject based on the case-based learning method. As an case, equipment called a laminator that is actually used in the manufacturing site was selected. Class deals with specific engineering issues at each stage of laminator manufacturing (design-machining-assembly-measurement-maintenance) in connection with general engineering topics in prerequisites in the curriculum. Topics include tolerance fit, length measurement, assembly practice, measurement design and statistics of machine maintenance, etc. Courses that apply the case-based learning method may be included in the curriculum as complementary roles to those that apply other student-centered learning method.

Scoping Review of Machine Learning and Deep Learning Algorithm Applications in Veterinary Clinics: Situation Analysis and Suggestions for Further Studies

  • Kyung-Duk Min
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.243-259
    • /
    • 2023
  • Machine learning and deep learning (ML/DL) algorithms have been successfully applied in medical practice. However, their application in veterinary medicine is relatively limited, possibly due to a lack in the quantity and quality of relevant research. Because the potential demands for ML/DL applications in veterinary clinics are significant, it is important to note the current gaps in the literature and explore the possible directions for advancement in this field. Thus, a scoping review was conducted as a situation analysis. We developed a search strategy following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed and Embase databases were used in the initial search. The identified items were screened based on predefined inclusion and exclusion criteria. Information regarding model development, quality of validation, and model performance was extracted from the included studies. The current review found 55 studies that passed the criteria. In terms of target animals, the number of studies on industrial animals was similar to that on companion animals. Quantitative scarcity of prediction studies (n = 11, including duplications) was revealed in both industrial and non-industrial animal studies compared to diagnostic studies (n = 45, including duplications). Qualitative limitations were also identified, especially regarding validation methodologies. Considering these gaps in the literature, future studies examining the prediction and validation processes, which employ a prospective and multi-center approach, are highly recommended. Veterinary practitioners should acknowledge the current limitations in this field and adopt a receptive and critical attitude towards these new technologies to avoid their abuse.