• Title/Summary/Keyword: Machine Learning Models

Search Result 1,395, Processing Time 0.026 seconds

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

Machine Learning and Deep Learning Models to Predict Income and Employment with Busan's Strategic Industry and Export (머신러닝과 딥러닝 기법을 이용한 부산 전략산업과 수출에 의한 고용과 소득 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.46 no.1
    • /
    • pp.169-187
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning and deep learning methods to forecast the income and employment using the strategic industries as well as investment, export, and exchange rates. The decision tree, artificial neural network, support vector machine, and deep learning models were used to forecast the income and employment in Busan. The following were the main findings of the comparison of their predictive abilities. First, the decision tree models predict the income and employment well. The forecasting values for the income and employment appeared somewhat differently according to the depth of decision trees and several conditions of strategic industries as well as investment, export, and exchange rates. Second, since the artificial neural network models show that the coefficients are somewhat low and RMSE are somewhat high, these models are not good forecasting the income and employment. Third, the support vector machine models show the high predictive power with the high coefficients of determination and low RMSE. Fourth, the deep neural network models show the higher predictive power with appropriate epochs and batch sizes. Thus, since the machine learning and deep learning models can predict the employment well, we need to adopt the machine learning and deep learning models to forecast the income and employment.

Modeling of AutoML using Colored Petri Net

  • Yo-Seob, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Developing a machine learning model and putting it into production goes through a number of steps. Automated Machine Learning(AutoML) appeared to increase productivity and efficiency by automating inefficient tasks that occur while repeating this process whenever machine learning is applied. The high degree of automation of AutoML models allows non-experts to use machine learning models and techniques without the need to become machine learning experts. Automating the process of applying machine learning end-to-end with AutoML models has the added benefit of creating simpler solutions, generating these solutions faster, and often generating models that outperform hand-designed models. In this paper, the AutoML data is collected and AutoML's Color Petri net model is created and analyzed based on it.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models (투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

COMPARATIVE ANALYSIS ON MACHINE LEARNING MODELS FOR PREDICTING KOSPI200 INDEX RETURNS

  • Gu, Bonsang;Song, Joonhyuk
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.211-226
    • /
    • 2017
  • In this paper, machine learning models employed in various fields are discussed and applied to KOSPI200 stock index return forecasting. The results of hyperparameter analysis of the machine learning models are also reported and practical methods for each model are presented. As a result of the analysis, Support Vector Machine and Artificial Neural Network showed a better performance than k-Nearest Neighbor and Random Forest.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

A Case Study of Rapid AI Service Deployment - Iris Classification System

  • Yonghee LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF