지금까지 연안에서 발생하는 쇄파에 대한 연구는 지속적으로 수행되었으며, 그에 따른 많은 실험자료가 축적되어 왔다. 또한, 다양한 실험자료로부터 공학적인 적용을 위한 쇄파 정보를 정량적으로 예측하기 위하여 회귀분석에 기반한 다양한 경험식이 제안되었다. 그러나 쇄파는 내재하고 있는 변동성이 있으므로 선형 회귀분석과 같은 선형적 통계접근 방법에는 한계가 있다. 본 연구에서는 쇄파파고 및 쇄파수심을 예측하기 위하여 기계학습 중 하나인 신경망을 사용하는 비선형 방법을 제안하였다. 신경망은 구글에서 배포하고 있는 머신러닝 오픈소스 플랫폼인 텐서플로(Tensorflow)를 이용하여 구축하였다. 신경망 모델은 수집된 실험자료를 무작위로 선택하여 학습하였으며, 학습에 이용하지 않은 자료를 사용하여 학습된 신경망을 평가하였다. 학습된 신경망에 의해 예측된 쇄파파고와 쇄파수심에 대한 예측결과는 기존의 경험식에 의한 계산결과에 비해 높은 예측성능을 보였으며, 이는 충분히 학습된 신경망은 쇄파파고 및 수심을 예측하기 위한 유용한 도구로 사용될 수 있음을 보여준다.
본 연구는 머신러닝의 기법이 도시 형태를 분석 및 추론하는 복잡한 과정에 적용 되었을 때, 도시 공간의 변화를 감지하고 분석하며 예측 할 수 있는 가능성을 사례 연구의 근거를 통해 제시하고자 한다. 사례 연구는 미국 보스톤의 메인 스트리트를 대상으로 도시 형태를 분석하는 과정에 머신러닝의 기법을 적용 실험하여 그 효용성을 예증했던 2006년의 선행 연구의 결과를 2016년 도시 형태와 현상을 비교 재해석하여, 10년간의 변화를 도시적 관점, 정보 환경의 관점, 기술적 관점에서 분석하고 이에 유효한 도시 모니터링의 시사점을 도출했다. 먼저, 다중 참여형 정보 수집의 플랫폼이 열리면서 대용량 데이터를 실시간으로 수집할 수 있는 기술적으로 가능해 졌다. 로봇이나 드론 등 인공지능이 탑재된 기계들을 사용하여 도시 정보를 취득하고 개입할 수 있는 가능성과 신산업의 요구에 맞추어 도시 정보 체계를 바꿀 수 있는 가능성이 열려있다. 결론적으로, 현 도시의 당면 문제에 집중하고 각 지역의 특성에 맞는 모니터링 전략을 세우는 것이 중요하며, 국내에서는 최근 도시 재생의 관점이 강조되고 있으므로 그 실천적인 연구가 필요하다.
골재 간극률은 구조적 강도, 내구성, 배수 및 투수성 등 다양한 아스팔트의 특성에 직접적인 영향을 미친다. 따라서 아스팔트 포장이 사용되는 위치, 기후, 환경 등에 적절하도록 골재 간극률이 설계되어야한다. 하지만 골재 간극률은 다양한 요인들에 의해 영향을 받으므로 그 설계가 쉽지 않다. 예를 들어 골재 입자의 크기 분포, 구성이나 아스팔트 바인더의 양, 다짐 수준 등 다양한 영향인자가 존재한다. 본 연구에서는 골재 간극률에 영향을 미치는 요인들로부터 골재 간극률을 예측하고자 하였다. 이를 위해 다양한 기계학습 모델 방법을 적용하였고 단일 기계학습 모델을 적용했을 때보다 높은 정확도로 골재 간극률을 예측할 수 있음을 보였다. 본 연구의 결과는 경험과 노동집약적인 실험에 의존하는 골재 간극률 예측에 데이터 기반의 접근방법을 적용할 수 있음을 보였으며 향후 최적 골재 간극률 설계 등에 활용 가능할 것으로 기대된다.
Journal of information and communication convergence engineering
/
제22권2호
/
pp.165-171
/
2024
In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101 backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCopretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant improvement and achieved the highest accuracy of 87.9%.
Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.
지난 몇 년 동안 스마트 폰을 비롯한 다양한 스마트 기기들은 휴대성을 기반으로 사용자의 요구에 의해 지속적으로 성능이 향상 되고 있다. 유비쿼터스 컴퓨팅 (Ubiquitous Computing) 환경과 센서 네트워크 (Sensor network)등의 다양한 망 접속 기술로 인하여 휴대성을 기반으로 하는 단말기들이 다양하게 보급되어 사용되고 있다. 스마트 단말들은 사용 중에 보다 안정적인 동작을 위하여 에너지 모니터링을 세밀하게 할 수 있는 기술이 필요하게 되었다. 소형 경량화 된 스마트 단말기는 다양한 멀티미디어 작업으로 인하여 단말 운용 중에 전원 부족 문제가 발생하게 된다. 이와 같은 상황을 미리 방지하고 안정적인 단말 운용을 위해서 기존에 다양한 추정 하드웨어가 개발 되었다. 그러나 잔량 추정을 하는 방법이나 성능이 비교적 우수하지 못하였다. 본 논문에서는 스마트 단말의 운용 중에 발생 할 수 있는 잔여 잔량 문제를 미리 예측하여 보다 안정적인 운용을 위한 리튬이온 셀의 잔량 추정 방법을 머신러닝에 기초를 두고 연구 하였다. 기존의 하드웨어적인 추정 방법이 아니라 사용 중인 리튬이온 셀의 특성을 머신러닝 기법을 이용한 학습 알고리즘으로 학습 시키고 최적화된 결과를 추정하여 적용 하고자 한다.
Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.
Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.
Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
Geomechanics and Engineering
/
제30권1호
/
pp.11-26
/
2022
One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.
This study reveals that the user industry has a limited role in being a source of technological capability in the case of the machine tool industry in Korea where the user industry is relatively more advanced than other capital goods industries. This study examines the sources of technological capability in terms of migration of workforces and flow of product development knowledge. Although the capital goods sector is generally regarded as being the sector where user-producer interaction is important, the user industry is not the seed-bed of technological capability for machine development. Users and producers interact in terms of expressing 'needs', mainly in the form of specifications. As a result of receiving unique specifications from users, the producer learns to react by making specific customised special purpose machines. The user's specification could include information o the imported machine originally used. When confronted with technical problems in developing a new machine, the producer accesses foreign sources of knowledge. This study's finding reveals that users of special purpose machines have a significantly clearer role in providing specifications than do users of general purpose machine tools. Most intensive interactive learning between users and producers in the production process is found in special purpose machine tools. From the empirical findings, policy implications are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.