• 제목/요약/키워드: Machine Learning Empirical Study

검색결과 92건 처리시간 0.033초

머신러닝 오픈소스 플랫폼을 활용한 쇄파 예측 (Prediction of Wave Breaking Using Machine Learning Open Source Platform)

  • 이광호;김탁겸;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제32권4호
    • /
    • pp.262-272
    • /
    • 2020
  • 지금까지 연안에서 발생하는 쇄파에 대한 연구는 지속적으로 수행되었으며, 그에 따른 많은 실험자료가 축적되어 왔다. 또한, 다양한 실험자료로부터 공학적인 적용을 위한 쇄파 정보를 정량적으로 예측하기 위하여 회귀분석에 기반한 다양한 경험식이 제안되었다. 그러나 쇄파는 내재하고 있는 변동성이 있으므로 선형 회귀분석과 같은 선형적 통계접근 방법에는 한계가 있다. 본 연구에서는 쇄파파고 및 쇄파수심을 예측하기 위하여 기계학습 중 하나인 신경망을 사용하는 비선형 방법을 제안하였다. 신경망은 구글에서 배포하고 있는 머신러닝 오픈소스 플랫폼인 텐서플로(Tensorflow)를 이용하여 구축하였다. 신경망 모델은 수집된 실험자료를 무작위로 선택하여 학습하였으며, 학습에 이용하지 않은 자료를 사용하여 학습된 신경망을 평가하였다. 학습된 신경망에 의해 예측된 쇄파파고와 쇄파수심에 대한 예측결과는 기존의 경험식에 의한 계산결과에 비해 높은 예측성능을 보였으며, 이는 충분히 학습된 신경망은 쇄파파고 및 수심을 예측하기 위한 유용한 도구로 사용될 수 있음을 보여준다.

도시 형태 변화 모니터링을 위한 머신러닝 기법의 가능성 - 보스톤 사례연구를 중심으로 - (Towards a Machine Learning Approach for Monitoring Urban Morphology - Focused on a Boston Case Study -)

  • 황지은
    • 디자인융복합연구
    • /
    • 제16권5호
    • /
    • pp.125-140
    • /
    • 2017
  • 본 연구는 머신러닝의 기법이 도시 형태를 분석 및 추론하는 복잡한 과정에 적용 되었을 때, 도시 공간의 변화를 감지하고 분석하며 예측 할 수 있는 가능성을 사례 연구의 근거를 통해 제시하고자 한다. 사례 연구는 미국 보스톤의 메인 스트리트를 대상으로 도시 형태를 분석하는 과정에 머신러닝의 기법을 적용 실험하여 그 효용성을 예증했던 2006년의 선행 연구의 결과를 2016년 도시 형태와 현상을 비교 재해석하여, 10년간의 변화를 도시적 관점, 정보 환경의 관점, 기술적 관점에서 분석하고 이에 유효한 도시 모니터링의 시사점을 도출했다. 먼저, 다중 참여형 정보 수집의 플랫폼이 열리면서 대용량 데이터를 실시간으로 수집할 수 있는 기술적으로 가능해 졌다. 로봇이나 드론 등 인공지능이 탑재된 기계들을 사용하여 도시 정보를 취득하고 개입할 수 있는 가능성과 신산업의 요구에 맞추어 도시 정보 체계를 바꿀 수 있는 가능성이 열려있다. 결론적으로, 현 도시의 당면 문제에 집중하고 각 지역의 특성에 맞는 모니터링 전략을 세우는 것이 중요하며, 국내에서는 최근 도시 재생의 관점이 강조되고 있으므로 그 실천적인 연구가 필요하다.

아스팔트 혼합물의 골재 간극률 예측을 위한 기계학습 프레임워크 (Machine Learning Framework for Predicting Voids in the Mineral Aggregation in Asphalt Mixtures)

  • 박혜민;나일호;김현환;지봉준
    • 한국지반신소재학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-25
    • /
    • 2024
  • 골재 간극률은 구조적 강도, 내구성, 배수 및 투수성 등 다양한 아스팔트의 특성에 직접적인 영향을 미친다. 따라서 아스팔트 포장이 사용되는 위치, 기후, 환경 등에 적절하도록 골재 간극률이 설계되어야한다. 하지만 골재 간극률은 다양한 요인들에 의해 영향을 받으므로 그 설계가 쉽지 않다. 예를 들어 골재 입자의 크기 분포, 구성이나 아스팔트 바인더의 양, 다짐 수준 등 다양한 영향인자가 존재한다. 본 연구에서는 골재 간극률에 영향을 미치는 요인들로부터 골재 간극률을 예측하고자 하였다. 이를 위해 다양한 기계학습 모델 방법을 적용하였고 단일 기계학습 모델을 적용했을 때보다 높은 정확도로 골재 간극률을 예측할 수 있음을 보였다. 본 연구의 결과는 경험과 노동집약적인 실험에 의존하는 골재 간극률 예측에 데이터 기반의 접근방법을 적용할 수 있음을 보였으며 향후 최적 골재 간극률 설계 등에 활용 가능할 것으로 기대된다.

Improving Chest X-ray Image Classification via Integration of Self-Supervised Learning and Machine Learning Algorithms

  • Tri-Thuc Vo;Thanh-Nghi Do
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.165-171
    • /
    • 2024
  • In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101 backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCopretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant improvement and achieved the highest accuracy of 87.9%.

마켓 타이밍과 유상증자 (Market Timing and Seasoned Equity Offering)

  • 서성원
    • 아태비즈니스연구
    • /
    • 제15권1호
    • /
    • pp.145-157
    • /
    • 2024
  • Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.

머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구 (An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation)

  • 장성진
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.797-802
    • /
    • 2020
  • 지난 몇 년 동안 스마트 폰을 비롯한 다양한 스마트 기기들은 휴대성을 기반으로 사용자의 요구에 의해 지속적으로 성능이 향상 되고 있다. 유비쿼터스 컴퓨팅 (Ubiquitous Computing) 환경과 센서 네트워크 (Sensor network)등의 다양한 망 접속 기술로 인하여 휴대성을 기반으로 하는 단말기들이 다양하게 보급되어 사용되고 있다. 스마트 단말들은 사용 중에 보다 안정적인 동작을 위하여 에너지 모니터링을 세밀하게 할 수 있는 기술이 필요하게 되었다. 소형 경량화 된 스마트 단말기는 다양한 멀티미디어 작업으로 인하여 단말 운용 중에 전원 부족 문제가 발생하게 된다. 이와 같은 상황을 미리 방지하고 안정적인 단말 운용을 위해서 기존에 다양한 추정 하드웨어가 개발 되었다. 그러나 잔량 추정을 하는 방법이나 성능이 비교적 우수하지 못하였다. 본 논문에서는 스마트 단말의 운용 중에 발생 할 수 있는 잔여 잔량 문제를 미리 예측하여 보다 안정적인 운용을 위한 리튬이온 셀의 잔량 추정 방법을 머신러닝에 기초를 두고 연구 하였다. 기존의 하드웨어적인 추정 방법이 아니라 사용 중인 리튬이온 셀의 특성을 머신러닝 기법을 이용한 학습 알고리즘으로 학습 시키고 최적화된 결과를 추정하여 적용 하고자 한다.

머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심 (Anomaly Detection of Big Time Series Data Using Machine Learning)

  • 권세혁
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.

Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression

  • Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.11-26
    • /
    • 2022
  • One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.

Knowledge Transfer between Users and Producers in the Accumulation of Technological Capability

  • Lim, Chai-Sung
    • 기술혁신연구
    • /
    • 제13권2호
    • /
    • pp.179-205
    • /
    • 2005
  • This study reveals that the user industry has a limited role in being a source of technological capability in the case of the machine tool industry in Korea where the user industry is relatively more advanced than other capital goods industries. This study examines the sources of technological capability in terms of migration of workforces and flow of product development knowledge. Although the capital goods sector is generally regarded as being the sector where user-producer interaction is important, the user industry is not the seed-bed of technological capability for machine development. Users and producers interact in terms of expressing 'needs', mainly in the form of specifications. As a result of receiving unique specifications from users, the producer learns to react by making specific customised special purpose machines. The user's specification could include information o the imported machine originally used. When confronted with technical problems in developing a new machine, the producer accesses foreign sources of knowledge. This study's finding reveals that users of special purpose machines have a significantly clearer role in providing specifications than do users of general purpose machine tools. Most intensive interactive learning between users and producers in the production process is found in special purpose machine tools. From the empirical findings, policy implications are discussed.

  • PDF