• Title/Summary/Keyword: Machine Learning Empirical Study

Search Result 91, Processing Time 0.028 seconds

Runoff Prediction from Machine Learning Models Coupled with Empirical Mode Decomposition: A case Study of the Grand River Basin in Canada

  • Parisouj, Peiman;Jun, Changhyun;Nezhad, Somayeh Moghimi;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.136-136
    • /
    • 2022
  • This study investigates the possibility of coupling empirical mode decomposition (EMD) for runoff prediction from machine learning (ML) models. Here, support vector regression (SVR) and convolutional neural network (CNN) were considered for ML algorithms. Precipitation (P), minimum temperature (Tmin), maximum temperature (Tmax) and their intrinsic mode functions (IMF) values were used for input variables at a monthly scale from Jan. 1973 to Dec. 2020 in the Grand river basin, Canada. The support vector machine-recursive feature elimination (SVM-RFE) technique was applied for finding the best combination of predictors among input variables. The results show that the proposed method outperformed the individual performance of SVR and CNN during the training and testing periods in the study area. According to the correlation coefficient (R), the EMD-SVR model outperformed the EMD-CNN model in both training and testing even though the CNN indicated a better performance than the SVR before using IMF values. The EMD-SVR model showed higher improvement in R value (38.7%) than that from the EMD-CNN model (7.1%). It should be noted that the coupled models of EMD-SVR and EMD-CNN represented much higher accuracy in runoff prediction with respect to the considered evaluation indicators, including root mean square error (RMSE) and R values.

  • PDF

A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model (선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측)

  • Eul-Hyuk Ahn;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.37-49
    • /
    • 2024
  • To date, numerous empirical formulas have been proposed through hydraulic model experiments to predict the wave breaker index, including wave height and depth of wave breaking, due to the inherent complexity of generation mechanisms. Unfortunately, research on the characteristics of wave breaking and the prediction of the wave breaker index for gravel beaches has been limited. This study aims to forecast the wave breaker index for gravel beaches using representative linear-based machine learning techniques known for their high predictive performance in regression or classification problems across various research fields. Initially, the applicability of existing empirical formulas for wave breaker indices to gravel seabeds was assessed. Various linear-based machine learning algorithms were then employed to build prediction models, aiming to overcome the limitations of existing empirical formulas in predicting wave breaker indices for gravel seabeds. Among the developed machine learning models, a new calculation formula for easily computable wave breaker indices based on the model was proposed, demonstrating high predictive performance for wave height and depth of wave breaking on gravel beaches. The study validated the predictive capabilities of the proposed wave breaker indices through hydraulic model experiments and compared them with existing empirical formulas. Despite its simplicity as a polynomial, the newly proposed empirical formula for wave breaking indices in this study exhibited exceptional predictive performance for gravel beaches.

Development of a New Munk-type Breaker Height Formula Using Machine Learning (머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안)

  • Choi, Byung-Jong;Nam, Hyung-Sik;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.165-172
    • /
    • 2021
  • Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

Development of a Model to Predict the Number of Visitors to Local Festivals Using Machine Learning (머신러닝을 활용한 지역축제 방문객 수 예측모형 개발)

  • Lee, In-Ji;Yoon, Hyun Shik
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.35-52
    • /
    • 2020
  • Purpose Local governments in each region actively hold local festivals for the purpose of promoting the region and revitalizing the local economy. Existing studies related to local festivals have been actively conducted in tourism and related academic fields. Empirical studies to understand the effects of latent variables on local festivals and studies to analyze the regional economic impacts of festivals occupy a large proportion. Despite of practical need, since few researches have been conducted to predict the number of visitors, one of the criteria for evaluating the performance of local festivals, this study developed a model for predicting the number of visitors through various observed variables using a machine learning algorithm and derived its implications. Design/methodology/approach For a total of 593 festivals held in 2018, 6 variables related to the region considering population size, administrative division, and accessibility, and 15 variables related to the festival such as the degree of publicity and word of mouth, invitation singer, weather and budget were set for the training data in machine learning algorithm. Since the number of visitors is a continuous numerical data, random forest, Adaboost, and linear regression that can perform regression analysis among the machine learning algorithms were used. Findings This study confirmed that a prediction of the number of visitors to local festivals is possible using a machine learning algorithm, and the possibility of using machine learning in research in the tourism and related academic fields, including the study of local festivals, was captured. From a practical point of view, the model developed in this study is used to predict the number of visitors to the festival to be held in the future, so that the festival can be evaluated in advance and the demand for related facilities, etc. can be utilized. In addition, the RReliefF rank result can be used. Considering this, it will be possible to improve the existing local festivals or refer to the planning of a new festival.

Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence (설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구)

  • Junhyub Jeon;Seung Bae Son;Jae-Gil Jung;Seok-Jae Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.103-113
    • /
    • 2024
  • Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter (한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교)

  • Lim, Joa-Sang;Kim, Jin-Man
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • As online texts have been rapidly growing, their automatic classification gains more interest with machine learning methods. Nevertheless, comparatively few research could be found, aiming for Korean texts. Evaluating them with statistical methods are also rare. This study took a sample of tweets and used machine learning methods to classify emotions with features of morphemes and n-grams. As a result, about 76% of emotions contained in tweets was correctly classified. Of the two methods compared in this study, Support Vector Machines were found more accurate than Na$\ddot{i}$ve Bayes. The linear model of SVM was not inferior to the non-linear one. Morphological features did not contribute to accuracy more than did the n-grams.

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

Development of Machine Learning-Based Platform for Distillation Column (증류탑을 위한 머신러닝 기반 플랫폼 개발)

  • Oh, Kwang Cheol;Kwon, Hyukwon;Roh, Jiwon;Choi, Yeongryeol;Park, Hyundo;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.565-572
    • /
    • 2020
  • This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.

Comparison of Machine Learning Analysis on Predictive Factors of Children's Planning-Organizing Executive Function by Income Level: Through Home Environment Quality and Wealth Factors

  • Lim, Hye-Kyung;Kim, Hyun-Ok;Park, Hae-Seon
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.651-662
    • /
    • 2021
  • Background and objective: This study identifies whether children's planning-organizing executive function can be significantly classified and predicted by home environment quality and wealth factors. Methods: For empirical analysis, we used the data collected from the 10th Panel Study on Korean Children in 2017. Using machine learning tools such as support vector machine (SVM) and random forest (RF), we evaluated the accuracy of the model in which home environment factors classify and predict children's planning-organizing executive functions, and extract the relative importance of variables that determine these executive functions by income group. Results: First, SVM analysis shows that home environment quality and wealth factors show high accuracy in classification and prediction in all three groups. Second, RF analysis shows that estate had the highest predictive power in the high-income group, followed by income, asset, learning, reinforcement, and emotional environment. In the middle-income group, emotional environment showed the highest score, followed by estate, asset, reinforcement, and income. In the low-income group, estate showed the highest score, followed by income, asset, learning, reinforcement, and emotional environment. Conclusion: This study confirmed that home environment quality and wealth factors are significant factors in predicting children's planning-organizing executive functions.