전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.
무선 센서 네트워크를 구성하는 무선 센서는 일반적으로 전력 및 자원이 극히 제한적이다. 무선 센서는 전력을 보존하기 위해 일정 주기마다 sleep 상태로 진입한다. Sleep deprivation attack은 무선 센서의 sleep 상태 진입을 막음으로써 전력을 소진 시키는 치명적인 공격이지만 이에 대한 뚜렷한 대응책이 없다. 이에 본 논문에서는 클러스터링 기반 이진 탐색 트리 구조의 Sleep deprivation attack 탐지 모델을 제안한다. 본 논문에서 제안하는 sleep deprivation attack 탐지 모델은 기계학습을 통해 분류한 공격 센서 노드와 정상 센서 노드의 특징을 사용한다. 이때 탐지 모델에 사용한 특징은 Long Short-Term Memory(LSTM), Decision Tree(DT), Support Vector Machine(SVM), K-Nearest Neighbor(K-NN)을 이용하여 결정하였다. 결정된 특징은 본 논문에서 제안한 알고리즘에 사용하여 공격 탐지를 위한 값들을 계산하였으며, 계산한 값을 판정하기 위한 임계값은 SVM을 적용하여 도출하였다. 본 논문에서 제안하는 탐지 모델은 기계학습으로 도출된 특징과 임계값을 본 논문에서 제안한 탐지 알고리즘에 적용하여 구성하였으며, 실험을 통해 전체 센서 노드 20개 중 공격 센서 노드의 비율이 0.35일 때 94%의 탐지율을 갖고 평균 에너지 잔량은 기존 연구보다 최대 26% 향상된 결과를 보였다.
터널 설계 시 지반조사를 통한 암반분류 결과는 공사기간 및 공사비 산출, 그리고 터널안정성 평가에 지대한 영향을 미친다. 국내에서 지금까지 완공된 3,526개소의 터널들의 설계 및 시공을 통해 관련 기술들은 지속적으로 발전되어 왔지만, 터널 설계 시 암질 및 암반등급을 보다 정확하게 평가하기 위한 방법에 대한 연구는 미미하여 평가자의 경험 및 주관에 따라 결과의 차이가 큰 경우가 적지 않다. 따라서 본 연구에서는 암석샘플에 대한 주관적 평가를 통한 기존의 인력에 의한 암반분류 대신, 최근 지반분야에서도 그 활용도가 급증하고 있는 머신러닝 알고리즘을 이용하여 시추조사에서 획득한 다양한 암석 및 암반정보를 분석하여 보다 신뢰성있는 RMR에 의한 암반분류 모델을 제시하고자 하였다. 국내 13개 터널을 대상으로 11개의 학습 인자(심도, 암종, RQD, 전기비저항, 일축압축강도, 탄성파 P파속도 및 S파 속도, 영률, 단위중량, 포아송비, RMR)를 선정하여 337개의 학습 데이터셋과 60개의 시험 데이터셋을 확보하였으며, 모델의 예측성능을 향상시키기 위해 6개의 머신러닝 알고리즘(DT, SVM, ANN, PCA & ANN, RF, XGBoost)과 각 알고리즘별 다양한 초매개변수(hyperparameter)를 적용하였다. 학습된 모델의 예측성능을 비교한 결과, DT 모델을 제외한 5개의 머신러닝 모델에서 시험데이터에 대한 RMR 평균절대오차 값이 8 미만으로 수렴되었으며, SVM 모델에서 가장 우수한 예측성능을 나타내었다. 본 연구를 통해 암반분류 예측에 대한 머신러닝 기법의 적용 가능성을 확인하였으며, 향후 다양한 데이터를 지속적으로 확보하여 예측모델의 성능을 향상시킨다면 보다 신뢰성 있는 암반 분류에 활용될 수 있을 것으로 기대된다.
가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.
컴퓨팅 환경의 발전에 따라 IT 기술이 의료, 산업, 통신, 문화 등의 분야에서 사람들에게 제공해주는 혜택이 늘어나 삶의 질도 향상되고 있다. 그에 따라 발전된 네트워크 환경을 노리는 다양한 악의적인 공격이 존재한다. 이러한 공격들을 사전에 탐지하기 위해 방화벽, 침입 탐지 시스템 등이 존재하지만, 나날이 진화하는 악성 공격들을 탐지하는 데에는 한계가 있다. 이를 해결하기 위해 기계 학습을 이용한 침입 탐지 연구가 활발히 진행되고 있지만, 학습 데이터셋의 불균형으로 인한 오탐 및 미탐이 발생하고 있다. 본 논문에서는 네트워크 침입 탐지에 사용되는 UNSW-NB15 데이터셋의 불균형성 문제를 해결하기 위해 랜덤 오버샘플링 방법을 사용했다. 실험을 통해 모델들의 accuracy, precision, recall, F1-score, 학습 및 예측 시간, 하드웨어 자원 소모량을 비교 분석했다. 나아가 본 연구를 기반으로 랜덤 오버샘플링 방법 이외에 불균형한 데이터 문제를 해결할 수 있는 다른 방법들과 성능이 높은 모델들을 이용하여 좀 더 효율적인 네트워크 침입 탐지 모델 연구로 발전시키고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.