• Title/Summary/Keyword: Machine Learning

Search Result 5,177, Processing Time 0.034 seconds

A Study on the Degree of Learning Interest in the Curriculum of Home Economics Education for the Middle and High School Girls in korea and Japan -Focused on the Clothes Construction and Making of the Clothing and Textiles Unit- (가정과 교육내용에 대한 한국과 일본 여 중고생의 학습관심도에 관한 연구 -의생활내용 중 의복구성분야를 중심으로-)

  • 강명희;정영숙
    • Journal of Korean Home Economics Education Association
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 1990
  • The purpose of this study is to investigate the degree of learning interest in the curriculum of home economics for the middle and high school girls in korea and Japan, and to obtain the basic guidance for the improvement of the effect of home economics education. In this study korea and Japanese textbooks were compared and the questionaires were administered to 290 middle school girls and 270 high school girls in Chong-Ju, korea, and 261 middle school girls and 248 high school girls in Tokyo, Japan. The obtained data were analyzed by percentile and $\chi$$\^$2/-test. In comparision of the degree of interest in hand sewing and machine sewing korean middle school girls showed higher interest than the high school girls, on the other hand, in Japan, the high school girls were more interested. In the unit of making a simple clothes, the middle school girls of both countries were more interested than the high school girls, and the degree of interest of Japanese girls was higher than that of korean girls.

  • PDF

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

Color & Texture Attribute Classification System of Fashion Item Image for Standardizing Learning Data in Fashion AI (패션 AI의 학습 데이터 표준화를 위한 패션 아이템 이미지의 색채와 소재 속성 분류 체계)

  • Park, Nanghee;Choi, Yoonmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.2
    • /
    • pp.354-368
    • /
    • 2020
  • Accurate and versatile image data-sets are essential for fashion AI research and AI-based fashion businesses based on a systematic attribute classification system. This study constructs a color and texture attribute hierarchical classification system by collecting fashion item images and analyzing the metadata of fashion items described by consumers. Essential dimensions to explain color and texture attributes were extracted; in addition, attribute values for each dimension were constructed based on metadata and previous studies. This hierarchical classification system satisfies consistency, exclusiveness, inclusiveness, and flexibility. The image tagging to confirm the usefulness of the proposed classification system indicated that the contents of attributes of the same image differ depending on the annotator that require a clear standard for distinguishing differences between the properties. This classification system will improve the reliability of the training data for machine learning, by providing standardized criteria for tasks such as tagging and annotating of fashion items.

Approximate k values using Repulsive Force without Domain Knowledge in k-means

  • Kim, Jung-Jae;Ryu, Minwoo;Cha, Si-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.976-990
    • /
    • 2020
  • The k-means algorithm is widely used in academia and industry due to easy and simple implementation, enabling fast learning for complex datasets. However, k-means struggles to classify datasets without prior knowledge of specific domains. We proposed the repulsive k-means (RK-means) algorithm in a previous study to improve the k-means algorithm, using the repulsive force concept, which allows deleting unnecessary cluster centroids. Accordingly, the RK-means enables to classifying of a dataset without domain knowledge. However, three main problems remain. The RK-means algorithm includes a cluster repulsive force offset, for clusters confined in other clusters, which can cause cluster locking; we were unable to prove RK-means provided optimal convergence in the previous study; and RK-means shown better performance only normalize term and weight. Therefore, this paper proposes the advanced RK-means (ARK-means) algorithm to resolve the RK-means problems. We establish an initialization strategy for deploying cluster centroids and define a metric for the ARK-means algorithm. Finally, we redefine the mass and normalize terms to close to the general dataset. We show ARK-means feasibility experimentally using blob and iris datasets. Experiment results verify the proposed ARK-means algorithm provides better performance than k-means, k'-means, and RK-means.

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Acoustic Emission Source Characterization and Fracture Behavior of Finite-width Plate with a Circular Hole Defect using Artificial Neural Network (인공신경회로망을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원특성과 파괴거동에 관한 연구)

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.170-177
    • /
    • 2009
  • The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.

OHC Algorithm for RPA Memory Based Reasoning (RPA분류기의 성능 향상을 위한 OHC알고리즘)

  • 이형일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.824-830
    • /
    • 2003
  • RPA (Recursive Partition Averaging) method was proposed in order to improve the storage requirement and classification rate of the Memory Based Reasoning. That algorithm worked well in many areas, however, the major drawbacks of RPA are it's pattern averaging mechanism. We propose an adaptive OHC algorithm which uses the FPD(Feature-based Population Densimeter) to increase the classification rate of RPA. The proposed algorithm required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the RPA. Also, by reducing the number of stored patterns, it showed a excellent results in terms of classification when we compare it to the k-NN.

  • PDF

A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors (핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상)

  • Kim, Hong Gon;Kim, Sodam;Kim, Hee-Wooong
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

A Study on the Construction of Stable Clustering by Minimizing the Order Bias (순서 바이어스 최소화에 의한 안정적 클러스터링 구축에 관한 연구)

  • Lee, Gye-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1571-1580
    • /
    • 1999
  • When a hierarchical structure is derived from data set for data mining and machine learning, using a conceptual clustering algorithm, one of the unsupervised learning paradigms, it is not unusual to have a different set of outcomes with respect to the order of processing data objects. To overcome this problem, the first classification process is proceeded to construct an initial partition. The partition is expected to imply the possible range in the number of final classes. We apply center sorting to the data objects in the classes of the partition for new data ordering and build a new partition using ITERATE clustering procedure. We developed an algorithm, REIT that leads to the final partition with stable and best partition score. A number of experiments were performed to show the minimization of order bias effects using the algorithm.

  • PDF