• Title/Summary/Keyword: Machine Learning

Search Result 5,173, Processing Time 0.028 seconds

Application of Asymmetric Support Vector Regression Considering Predictive Propensity (예측성향을 고려한 비대칭 서포트벡터 회귀의 적용)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.71-82
    • /
    • 2022
  • Most of the predictions using machine learning are neutral predictions considering the symmetrical situation where the predicted value is not smaller or larger than the actual value. However, in some situations, asymmetric prediction such as over-prediction or under-prediction may be better than neutral prediction, and it can induce better judgment by providing various predictions to decision makers. A method called Asymmetric Twin Support Vector Regression (ATSVR) using TSVR(Twin Support Vector Regression), which has a fast calculation time, was proposed by controlling the asymmetry of the upper and lower widths of the ε-tube and the asymmetry of the penalty with two parameters. In addition, by applying the existing GSVQR and the proposed ATSVR, prediction using the prediction propensities of over-prediction, under-prediction, and neutral prediction was performed. When two parameters were used for both GSVQR and ATSVR, it was possible to predict according to the prediction propensity, and ATSVR was found to be more than twice as fast in terms of calculation time. On the other hand, in terms of accuracy, there was no significant difference between ATSVR and GSVQR, but it was found that GSVQR reflected the prediction propensity better than ATSVR when checking the figures. The accuracy of under-prediction or over-prediction was lower than that of neutral prediction. It seems that using both parameters rather than using one of the two parameters (p_1,p_2) increases the change in the prediction tendency. However, depending on the situation, it may be better to use only one of the two parameters.

Artificial Intelligence Application Cases and Considerations in Digital Healthcare (디지털헬스케어에서의 인공지능 적용 사례 및 고찰)

  • Park, Minseo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.141-147
    • /
    • 2022
  • In a broad sense, the definition of digital health care is an industrial area that manages personal health and diseases through the convergence of the health care industry and ICT. In a narrow sense, various medical technologies are used to manage medical services to improve patient health. This paper aims to provide design guidelines so that artificial intelligence technology can be applied stably and efficiently to more diverse digital health care fields in the future by introducing use cases of artificial intelligence and machine learning techniques applied in the digital health care field. For this purpose, in this thesis, the medical field and the daily life field are divided and examined. The two regions have different data characteristics. By further subdividing the two areas, we looked at the use cases of artificial intelligence algorithms according to data characteristics and problem definitions and characteristics. Through this, we will increase our understanding of artificial intelligence technologies used in the digital health care field and examine the possibility of using various artificial intelligence technologies.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

A Study on Android Malware Detection using Selected Features (선별된 특성 정보를 이용한 안드로이드 악성 앱 탐지 연구)

  • Myeong, Sangjoon;Kim, Kangseok
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2022
  • Mobile malicious apps are increasing rapidly, and Android, which accounts for most of the global mobile OS market, is becoming a major target of mobile cyber security threats. Therefore, in order to cope with rapidly evolving malicious apps, there is a need for detection techniques of malicious apps using machine learning, one of artificial intelligence implementation technologies. In this paper, we propose a selected feature method using feature selection and feature extraction that can improve the detection performance of malicious apps. In the feature selection process, the detection performance improved according to the number of features, and the API showed relatively better detection performance than the permission. Also combining the two characteristics showed high precision of over 93% on average, confirming that the appropriate combination of characteristics could improve the detection performance.

Group-wise Keyword Extraction of the External Audit using Text Mining and Association Rules (텍스트마이닝과 연관규칙을 이용한 외부감사 실시내용의 그룹별 핵심어 추출)

  • Seong, Yoonseok;Lee, Donghee;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.77-89
    • /
    • 2022
  • Purpose: In order to improve the audit quality of a company, an in-depth analysis is required to categorize the audit report in the form of a text document containing the details of the external audit. This study introduces a systematic methodology to extract keywords for each group that determines the differences between groups such as 'audit plan' and 'interim audit' using audit reports collected in the form of text documents. Methods: The first step of the proposed methodology is to preprocess the document through text mining. In the second step, the documents are classified into groups using machine learning techniques and based on this, important vocabularies that have a dominant influence on the performance of classification are extracted. In the third step, the association rules for each group's documents are found. In the last step, the final keywords for each group representing the characteristics of each group are extracted by comparing the important vocabulary for classification with the important vocabulary representing the association rules of each group. Results: This study quantitatively calculates the importance value of the vocabulary used in the audit report based on machine learning rather than the qualitative research method such as the existing literature search, expert evaluation, and Delphi technique. From the case study of this study, it was found that the extracted keywords describe the characteristics of each group well. Conclusion: This study is meaningful in that it has laid the foundation for quantitatively conducting follow-up studies related to key vocabulary in each stage of auditing.

Detection of Abnormal Dam Water Level Data Based on Machine Learning (기계학습에 기반한 댐 수위 이상 데이터 탐지)

  • Bang, Suil;Lee, Do-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.293-296
    • /
    • 2021
  • K-water에서는 다목적댐의 관리를 위해 실시간으로 댐수위, 하천 수위 및 강우량 등을 계측하고 있으며, 계측된 값들은 댐을 효과적으로 운영하는데 필요한 데이터로 활용되고 있다. 특히 댐수위 이상 데이터를 탐지하지 못한 채 그대로 사용할 경우 댐의 방류 시기와 방류량 등을 결정하는 중요한 의사결정을 그르칠 수 있으므로 이를 신속히 탐지하는 것이 매우 중요하다. 현재의 자동화된 이상 데이터 탐지방법 중 하나는 현재 데이터가 최댓값과 최솟값을 초과할 때, 다른 하나는 현재 데이터와 일정 시간 동안의 평균값 간의 차이가 관리자가 정한 특정 값을 벗어났을 때를 기준으로 삼고 있다. 전자는 상한과 하한의 초과 여부만 판단하므로 탐지가 쉬우나 정상범위 내에서 발생한 이상 데이터는 탐지가 불가하다. 후자는 관리자의 경험을 통해 판단 조건을 정하기 때문에 객관성이 결여되는 문제가 있다. 특히 방류와 강우가 복합적으로 댐수위에 영향을 미치는 홍수기에 관리자의 경험에 기초한 이상 데이터 판별은 신뢰성의 문제가 있을 수 있다. 따라서 본 연구에서는 기계학습을 최초로 적용하여 이상 데이터를 탐지하고자 하였다. 댐수위, 누적강우량 및 누적방류량 데이터와 댐수위데이터를 가공하여 생성한 댐수위차, 댐수위차평균, 댐수위평균 등 자질들의 다양한 조합을 만든 후 이를 Random Forest, SVM, AdaptiveBoost 및 다층퍼셉트론(MLP) 등과 같은 여러 가지 기계학습모델 등을 통해 이상 데이터를 판별하는 실험(분류)을 하였다. 실험결과 댐수위, 댐수위차, 댐수위-댐수위평균, 누적강우량, 누적방류량 및 댐수위차평균을 사용하였을 때 MLP에서 가장 우수한 성능을 보였다. 이 연구를 통해서 댐수위 이상 데이터를 기계학습의 분류기능을 통해 효과적으로 탐지할 수 있다는 것과 모델의 성능은 실험에 사용한 자질의 수뿐 아니라 자질의 종류에도 큰 영향을 받는다는 것을 알 수 있었다.

Classification of Unstructured Customer Complaint Text Data for Potential Vehicle Defect Detection (잠재적 차량 결함 탐지를 위한 비정형 고객불만 텍스트 데이터 분류)

  • Ju Hyun Jo;Chang Su Ok;Jae Il Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.72-81
    • /
    • 2023
  • This research proposes a novel approach to tackle the challenge of categorizing unstructured customer complaints in the automotive industry. The goal is to identify potential vehicle defects based on the findings of our algorithm, which can assist automakers in mitigating significant losses and reputational damage caused by mass claims. To achieve this goal, our model uses the Word2Vec method to analyze large volumes of unstructured customer complaint data from the National Highway Traffic Safety Administration (NHTSA). By developing a score dictionary for eight pre-selected criteria, our algorithm can efficiently categorize complaints and detect potential vehicle defects. By calculating the score of each complaint, our algorithm can identify patterns and correlations that can indicate potential defects in the vehicle. One of the key benefits of this approach is its ability to handle a large volume of unstructured data, which can be challenging for traditional methods. By using machine learning techniques, we can extract meaningful insights from customer complaints, which can help automakers prioritize and address potential defects before they become widespread issues. In conclusion, this research provides a promising approach to categorize unstructured customer complaints in the automotive industry and identify potential vehicle defects. By leveraging the power of machine learning, we can help automakers improve the quality of their products and enhance customer satisfaction. Further studies can build upon this approach to explore other potential applications and expand its scope to other industries.

Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms (SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.5-12
    • /
    • 2023
  • Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.

Development of Artificial Intelligence Instructional Program using Python and Robots (파이썬과 로봇을 활용한 인공지능(AI) 교육 프로그램 개발)

  • Yoo, Inhwan;Jeon, Jaecheon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.369-376
    • /
    • 2021
  • With the development of artificial intelligence (AI) technology, discussions on the use of artificial intelligence are actively taking place in many fields, and various policies for nurturing artificial intelligence talents are being promoted in the field of education. In this study, we propose a robot programming framework using artificial intelligence technology, and based on this, we use Python, which is used frequently in the machine learning field, and an educational robot that is highly utilized in the field of education to provide artificial intelligence. (AI) education program was proposed. The level of autonomous driving (levels 0-5) suggested by the International Society of Automotive Engineers (SAE) is simplified to four levels, and based on this, the camera attached to the robot recognizes and detects lines (objects). The goal was to make a line detector that can move by itself. The developed program is not a standardized form of solving a given problem by simply using a specific programming language, but has the experience of defining complex and unstructured problems in life autonomously and solving them based on artificial intelligence (AI) technology. It is meaningful.

  • PDF

A Case Study of Artificial Intelligence Education for Graduate School of Education (교육 대학원에서의 인공지능 교육 사례)

  • Han, Kyujung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.401-409
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

  • PDF