• 제목/요약/키워드: Machine Learning(ml)

검색결과 302건 처리시간 0.024초

뇌 MRI와 인지기능평가를 이용한 아밀로이드 베타 양성 예측 연구 (Prediction of Amyloid β-Positivity with both MRI Parameters and Cognitive Function Using Machine Learning)

  • 박혜진;이지영;양진주;김희진;김영서;김지영;최윤영
    • 대한영상의학회지
    • /
    • 제84권3호
    • /
    • pp.638-652
    • /
    • 2023
  • 목적 경도인지장애와 알츠하이머 치매 환자에서 아밀로이드베타 양성을 예측할 수 있는 MRI 특징을 알아보고 머신러닝으로 아밀로이드베타 양성 예측 모형의 성능을 알아보고자 하였다. 대상과 방법 후향적 및 단면조사연구로 경도인지장애와 알츠하이머 치매 총 139명의 환자를 대상으로 하였다. 이들은 모두 뇌 MRI와 아밀로이드 PET-CT를 시행하였다. 대상자는 아밀로이드 베타 양성군(n = 84)과 아밀로이드 베타 음성군(n = 55)으로 분류하였다. 시각적 분석으로는 뇌백질 고신호 병변의 Fazekas 척도와 뇌미세출혈 개수를 시행하였다. 정량분석으로 뇌백질 고신호 병변의 부피와 국소뇌부피를 측정하였다. 다중 로지스틱 회귀분석과 머신러닝 기법으로 아밀로이드베타 양성을 가장 잘 예측할 수 있는 MRI 특징을 확인하였다. 결과 시각적분석에서 아밀로이드베타 양성군은 뇌백질 고신호 병변의 Fazekas 척도(p = 0.02)와 뇌미세출혈 개수(p = 0.04)가 유의미하게 높았다. 해마, 내후각피질, 설전부의 국소뇌부피들은 아밀로이드베타 양성군에서 유의미하게 작았다(p < 0.05). 제3뇌실(p = 0.002)의 부피는 아밀로이드베타 양성군에서 유의미하게 컸다. 간이 정신 상태 검사와 국소뇌부피를 이용하여 머신러닝기법을 이용했을 때 좋은 정확도를 보였다(81.1%). 결론 간이 정신 상태 검사, 제3뇌실과 해마 부피를 이용한 머신러닝의 적용은 아밀로이드베타 양성을 예측하는데 활용될 수 있다.

방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용 (Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application)

  • 강전성;오성권
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Performance Comparison of Decision Trees of J48 and Reduced-Error Pruning

  • Jin, Hoon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.30-33
    • /
    • 2016
  • With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.

정보보호 분야의 XAI 기술 동향

  • 김홍비;이태진
    • 정보보호학회지
    • /
    • 제31권5호
    • /
    • pp.21-31
    • /
    • 2021
  • 컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.

캐글 데이터셋을 이용한 머신러닝 악성코드 분류시스템에서 분류정확도 향상방법 (Improvement Method of Classification Rate in ML Antivirus systems using Kaggle Datasets)

  • 김경신
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.49-52
    • /
    • 2019
  • 머신러닝을 이용한 악성코드 분류 시스템의 대부분이 캐글 데이터셋 10,868건을 사용하여 분류의 정확도를 측정한다. 이 데이터셋에 포함된 바이러스 바이트코드에는 미확인(undefined)필드라는 부분이 과도하게 존재한다. 캐글 데이터셋 특정 Label의 미확인필드 포함도는 75%가 넘는 경우도 존재한다. 이 경우 미확인 필드를 어떻게 처리하느냐가 시스템의 성능에 가장 큰 영향을 끼친다. 본 연구에서는 이러한 캐글 데이터셋의 미확인필드 처리방법을 제시하고 그에 따른 분류 정확도를 연구하였다. 다양한 처리방법에 대한 정확도를 측정하여 제안한 방식의 타당성을 증명하였다.

  • PDF

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

생체신호 기반의 T-SNE 를 활용한 대화 내 감정 인식 (Physiological Signal-Based Emotion Recognition in Conversations Using T-SNE)

  • 임수빈;이병천 ;문지훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.703-705
    • /
    • 2023
  • 본 연구는 대화 중 생체신호 데이터를 활용하여 감정 인식 분야에서 더욱 정확하고 범용성이 높은 인식 기술을 제안한다. 이를 위해, 먼저 대화별 길이에 따른 측정값의 개수를 동일하게 조정하고 효과적인 생체신호 데이터의 조합을 비교 및 분석하기 위해 차원 축소 기법인 T-SNE (T-distributed Stochastic Neighbor Embedding)을 활용하여 감정 라벨의 분포를 확인한다. 또한, AutoML (Automated Machine Learning)을 이용하여 축소된 데이터로 감정을 분류 및 각성도와 긍정도를 예측하여 감정을 가장 잘 인식하는 생체신호 데이터의 조합을 발견한다.

Role of Radio Frequency Identification (RFID) in Warehouse and Logistic Management System using Machine Learning Algorithm

  • Laviza Falak Naz
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.109-118
    • /
    • 2024
  • The world today is advancing towards a digital solution for every indusial domain varying from advanced engineering and medicine to training and management. The supply cycles can only be boosted via an effective management of the warehouse and a stronger hold over the logistics and inventory insights. RFID technology has been an open source tool for various MNCs and corporal organization who have progressed along a considerable drift on the charts. RFID is a methodology of analysing the warehouse and logistic data and create useful information in line to the past trends and future forecasts. The method has a high tactical accuracy and has been seen providing up to 99.57% accurate insights for the future cycle, based on the organizational capabilities and available resources. This paper discusses the implementation of RFID on field and provides results of datasets retrieved from controlled data of a practical warehouse and logistics system.

Digitalization as an aggregate performance in the energy transition for nuclear industry

  • Florencia de los Angeles Renteria del Toro;Chen Hao;Akira Tokuhiro;Mario Gomez-Fernandez;Armando Gomez-Torres
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1267-1276
    • /
    • 2024
  • The emerging technologies at the industrial level have deployed rapidly within the energy transition process innovations. The nuclear industry incorporates several technologies like Artificial Intelligence (AI), Machine Learning (ML), Digital Twins, High-Performance-Computing (HPC) and Quantum Computing (QC), among others. Factors identifications are explained to set up a regulatory framework in the digitalization era, providing new capabilities paths for nuclear technologies in the forthcoming years. The Analytical Network Process (ANP) integrates the quantitative-qualitative decision-making analysis to assess the implementation of different aspects in the digital transformation for the New-Energy Transition Era (NETE) with a Nuclear Power Infrastructure Development (NPID).

소프트웨어 정의 무선 메쉬 네트워크에서의 경량화된 중복 제거 기법 (LTRE: Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks)

  • 박광우;김원태;김준우;백상헌
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.976-985
    • /
    • 2017
  • 낮은 비용으로 무선 네트워킹 인프라를 구축할 수 있는 무선 메쉬 네트워크에서는 제한된 무선 자원을 효율적으로 이용하기 위해 패킷 전송(특히, 불필요하게 중복되는 패킷 전송)을 신중하게 처리해야 한다. 본 논문에서는 컨트롤러를 통한 중앙 집중식의 관리가 가능한 소프트웨어 정의 네트워킹 기반의 무선 메쉬 네트워크에서 불필요하게 중복 전송되는 데이터의 양을 감소시키기 위해 경량화된 중복 제거기법을 제안한다. 제안하는 중복 제거 기법은 감소되는 트래픽 양을 극대화하기 위해 컨트롤러가 1) 기계학습 기반의 정보 요청, 2) ID기반의 소스 라우팅, 3) 인기도 기반의 캐쉬 업데이트를 통해 중복 제거 효과를 극대화시킬 수 있는 최적의 경로를 결정한다. 시뮬레이션 결과는 제안하는 기법을 통해 전체 트래픽 부하를 18.34%-48.89% 만큼 감소시킬 수 있음을 보여준다.