목적 경도인지장애와 알츠하이머 치매 환자에서 아밀로이드베타 양성을 예측할 수 있는 MRI 특징을 알아보고 머신러닝으로 아밀로이드베타 양성 예측 모형의 성능을 알아보고자 하였다. 대상과 방법 후향적 및 단면조사연구로 경도인지장애와 알츠하이머 치매 총 139명의 환자를 대상으로 하였다. 이들은 모두 뇌 MRI와 아밀로이드 PET-CT를 시행하였다. 대상자는 아밀로이드 베타 양성군(n = 84)과 아밀로이드 베타 음성군(n = 55)으로 분류하였다. 시각적 분석으로는 뇌백질 고신호 병변의 Fazekas 척도와 뇌미세출혈 개수를 시행하였다. 정량분석으로 뇌백질 고신호 병변의 부피와 국소뇌부피를 측정하였다. 다중 로지스틱 회귀분석과 머신러닝 기법으로 아밀로이드베타 양성을 가장 잘 예측할 수 있는 MRI 특징을 확인하였다. 결과 시각적분석에서 아밀로이드베타 양성군은 뇌백질 고신호 병변의 Fazekas 척도(p = 0.02)와 뇌미세출혈 개수(p = 0.04)가 유의미하게 높았다. 해마, 내후각피질, 설전부의 국소뇌부피들은 아밀로이드베타 양성군에서 유의미하게 작았다(p < 0.05). 제3뇌실(p = 0.002)의 부피는 아밀로이드베타 양성군에서 유의미하게 컸다. 간이 정신 상태 검사와 국소뇌부피를 이용하여 머신러닝기법을 이용했을 때 좋은 정확도를 보였다(81.1%). 결론 간이 정신 상태 검사, 제3뇌실과 해마 부피를 이용한 머신러닝의 적용은 아밀로이드베타 양성을 예측하는데 활용될 수 있다.
In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.
International journal of advanced smart convergence
/
제5권1호
/
pp.30-33
/
2016
With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.
컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.
머신러닝을 이용한 악성코드 분류 시스템의 대부분이 캐글 데이터셋 10,868건을 사용하여 분류의 정확도를 측정한다. 이 데이터셋에 포함된 바이러스 바이트코드에는 미확인(undefined)필드라는 부분이 과도하게 존재한다. 캐글 데이터셋 특정 Label의 미확인필드 포함도는 75%가 넘는 경우도 존재한다. 이 경우 미확인 필드를 어떻게 처리하느냐가 시스템의 성능에 가장 큰 영향을 끼친다. 본 연구에서는 이러한 캐글 데이터셋의 미확인필드 처리방법을 제시하고 그에 따른 분류 정확도를 연구하였다. 다양한 처리방법에 대한 정확도를 측정하여 제안한 방식의 타당성을 증명하였다.
Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.
본 연구는 대화 중 생체신호 데이터를 활용하여 감정 인식 분야에서 더욱 정확하고 범용성이 높은 인식 기술을 제안한다. 이를 위해, 먼저 대화별 길이에 따른 측정값의 개수를 동일하게 조정하고 효과적인 생체신호 데이터의 조합을 비교 및 분석하기 위해 차원 축소 기법인 T-SNE (T-distributed Stochastic Neighbor Embedding)을 활용하여 감정 라벨의 분포를 확인한다. 또한, AutoML (Automated Machine Learning)을 이용하여 축소된 데이터로 감정을 분류 및 각성도와 긍정도를 예측하여 감정을 가장 잘 인식하는 생체신호 데이터의 조합을 발견한다.
International Journal of Computer Science & Network Security
/
제24권6호
/
pp.109-118
/
2024
The world today is advancing towards a digital solution for every indusial domain varying from advanced engineering and medicine to training and management. The supply cycles can only be boosted via an effective management of the warehouse and a stronger hold over the logistics and inventory insights. RFID technology has been an open source tool for various MNCs and corporal organization who have progressed along a considerable drift on the charts. RFID is a methodology of analysing the warehouse and logistic data and create useful information in line to the past trends and future forecasts. The method has a high tactical accuracy and has been seen providing up to 99.57% accurate insights for the future cycle, based on the organizational capabilities and available resources. This paper discusses the implementation of RFID on field and provides results of datasets retrieved from controlled data of a practical warehouse and logistics system.
Florencia de los Angeles Renteria del Toro;Chen Hao;Akira Tokuhiro;Mario Gomez-Fernandez;Armando Gomez-Torres
Nuclear Engineering and Technology
/
제56권4호
/
pp.1267-1276
/
2024
The emerging technologies at the industrial level have deployed rapidly within the energy transition process innovations. The nuclear industry incorporates several technologies like Artificial Intelligence (AI), Machine Learning (ML), Digital Twins, High-Performance-Computing (HPC) and Quantum Computing (QC), among others. Factors identifications are explained to set up a regulatory framework in the digitalization era, providing new capabilities paths for nuclear technologies in the forthcoming years. The Analytical Network Process (ANP) integrates the quantitative-qualitative decision-making analysis to assess the implementation of different aspects in the digital transformation for the New-Energy Transition Era (NETE) with a Nuclear Power Infrastructure Development (NPID).
낮은 비용으로 무선 네트워킹 인프라를 구축할 수 있는 무선 메쉬 네트워크에서는 제한된 무선 자원을 효율적으로 이용하기 위해 패킷 전송(특히, 불필요하게 중복되는 패킷 전송)을 신중하게 처리해야 한다. 본 논문에서는 컨트롤러를 통한 중앙 집중식의 관리가 가능한 소프트웨어 정의 네트워킹 기반의 무선 메쉬 네트워크에서 불필요하게 중복 전송되는 데이터의 양을 감소시키기 위해 경량화된 중복 제거기법을 제안한다. 제안하는 중복 제거 기법은 감소되는 트래픽 양을 극대화하기 위해 컨트롤러가 1) 기계학습 기반의 정보 요청, 2) ID기반의 소스 라우팅, 3) 인기도 기반의 캐쉬 업데이트를 통해 중복 제거 효과를 극대화시킬 수 있는 최적의 경로를 결정한다. 시뮬레이션 결과는 제안하는 기법을 통해 전체 트래픽 부하를 18.34%-48.89% 만큼 감소시킬 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.