• Title/Summary/Keyword: Machine Failure

Search Result 738, Processing Time 0.022 seconds

Fault Diagnosis of a Pump Using Analysis of Noise (작동음의 분석을 이용한 펌프의 고장진단)

  • 박순재;이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.22-28
    • /
    • 2003
  • We should maintain the maximum operation capacity for production facilities and find properly out the fault of each equipment rapidly in order to decrease a loss caused by its failure. The acoustic signals of a machine always carry the dynamic information of the machine. These signals are very useful for the feature extraction and fault diagnosis. We performed a fundamental study which develops a system of fault diagnosis for a pump. We obtained noises by a microphone, analysed and compared the signals converted to Sequency range for normal products, artificially deformed products. We tried to search a change of noise signals according to machine malfunctions and analyse the type of deformation or failure. The results showed that acoustic signals as well as vibration signals can be used as a simple method for a detection of machine malfunction or fault diagnosis.

Fault Diagnosis of a Pump Using Analysis of Noise (작동음의 분석을 이용한 펌프의 고장진단)

  • 박순재;이신영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.99-104
    • /
    • 2003
  • We should maintain the minimum operation capacity for production facilities and find properly out the fault of each equipment rapidly in order to decrease a loss caused by its failure. The acoustic signals of a machine always carry the dynamic information of the machine. These signals are very useful for the feature extraction and fault diagnosis. We performed a fundamental study which develops a system of fault diagnosis for a pump. We obtained noises by a microphone, analysed and compared the signals converted to frequency range for normal products, artificially deformed products. We tried to search a change of noise signals according to machine malfunctions and analyse the type of deformation or failure. The results showed that acoustic signals as well as vibration signals can be used as a simple method for a detection of machine malfunction or fault diagnosis.

  • PDF

A Study of Reliability Evaluation and Analysis for Core Units of Machine Tools (공작기계 핵심부품의 신뢰성 평가 ${\cdot}$ 분석에 관한 연구)

  • Lee, Seung-Woo;Song, Jun-Yeob;Lee, Hwa-Ki
    • Journal of Applied Reliability
    • /
    • v.3 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • Recently, the reliability evaluation and analysis are applied for many industrial products, and many products are required to guarantee in quality and in efficiency. The purpose of this paper is to present some of reliability prediction methodologies that are applicable to machine tools. Especially ATC (Automatic Tool Changer) and Interface Card of PC-NC, which are core components of the machine tools, were chosen as the target of the reliability evaluation and analysis. The results of this research has shown the failure rate, MTBF(Mean Time Between Failure), and reliability for those components. It is expected that proposed methodologies will be applicable to evaluation of reliability for other industrial products.

  • PDF

Adaptive Decision Tree Algorithm for Machine Diagnosis (기계 진단을 위한 적응형 의사결정 트리 알고리즘)

  • 백준걸;김강호;김창욱;김성식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.235-238
    • /
    • 2000
  • This article presents an adaptive decision tree algorithm for dynamically reasoning machine failure cause out of real-time, large-scale machine status database. On the basis of experiment using semiconductor etching machine, it has been verified that our model outperforms previously proposed decision tree models.

  • PDF

Development of a Web-Based Remote Monitoring System for Evaluating Degradation of Machine Tools Using ART2 (ART2 신경회로망을 이용한 공작기계의 웹기반 원격 성능저하 모니터링 시스템 개발)

  • Kim, Cho-Won;Choi, Kook-Jin;Jung, Sung-Hwan;Hong, Dae-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2009
  • This study proposes a web-based remote monitoring system for evaluating degradation of machine tools using ART2(Adaptive Resonance Theory 2) neural network. A number of studies on the monitoring of machine tools using neural networks have been reported. However, when normal condition is changed due to factors such as maintenance, tool change etc., or a new failure signal is generated, such algorithms need to be entirely retrained in order to accommodate the new signals. To cope with such problems, this study develops a remote monitoring system using ART2 in which new signals when required are simply added to the classes previously trained. This system can monitor degradation as well as failure of machine tools. To show the effectiveness of the proposed approach, the system is experimentally applied to monitoring a simulator similar to the main spindle of a machine tool, and the results show that the proposed system can be extended to monitoring of real industrial machine tools and equipment.

Determination of Resetting Time to the Process Mean Shift with Failure (고장을 고려한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.145-152
    • /
    • 2019
  • All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.

Failure estimation of the composite laminates using machine learning techniques

  • Serban, Alexandru
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The problem of layup optimization of the composite laminates involves a very complex multidimensional solution space which is usually non-exhaustively explored using different heuristic computational methods such as genetic algorithms (GA). To ensure the convergence to the global optimum of the applied heuristic during the optimization process it is necessary to evaluate a lot of layup configurations. As a consequence the analysis of an individual layup configuration should be fast enough to maintain the convergence time range to an acceptable level. On the other hand the mechanical behavior analysis of composite laminates for any geometry and boundary condition is very convoluted and is performed by computational expensive numerical tools such as finite element analysis (FEA). In this respect some studies propose very fast FEA models used in layup optimization. However, the lower bound of the execution time of FEA models is determined by the global linear system solving which in some complex applications can be unacceptable. Moreover, in some situation it may be highly preferred to decrease the optimization time with the cost of a small reduction in the analysis accuracy. In this paper we explore some machine learning techniques in order to estimate the failure of a layup configuration. The estimated response can be qualitative (the configuration fails or not) or quantitative (the value of the failure factor). The procedure consists of generating a population of random observations (configurations) spread across solution space and evaluating using a FEA model. The machine learning method is then trained using this population and the trained model is then used to estimate failure in the optimization process. The results obtained are very promising as illustrated with an example where the misclassification rate of the qualitative response is smaller than 2%.

Coupling numerical modeling and machine-learning for back analysis of cantilever retaining wall failure

  • Amichai Mitelman;Gili Lifshitz Sherzer
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.307-314
    • /
    • 2023
  • In this paper we back-analyze a failure event of a 9 m high concrete cantilever wall subjected to earth loading. Granular soil was deposited into the space between the wall and a nearby rock slope. The wall segments were not designed to carry lateral earth loading and collapsed due to excessive bending. As many geotechnical programs rely on the Mohr-Coulomb (MC) criterion for elastoplastic analysis, it is useful to apply this failure criterion to the concrete material. Accordingly, the back-analysis is aimed to search for the suitable MC parameters of the concrete. For this study, we propose a methodology for accelerating the back-analysis task by automating the numerical modeling procedure and applying a machine-learning (ML) analysis on FE model results. Through this analysis it is found that the residual cohesion and friction angle have a highly significant impact on model results. Compared to traditional back-analysis studies where good agreement between model and reality are deemed successful based on a limited number of models, the current ML analysis demonstrate that a range of possible combinations of parameters can yield similar results. The proposed methodology can be modified for similar calibration and back-analysis tasks.

Application of the Combined Techniques for Reliability Improvement on Machine Design Process: Case Study (기계설계 과정의 신뢰성 향상을 위한 혼합 기법 응용: 사례연구)

  • Choi, Jang-Jin;Lim, Ik-Sung;Koo, Il-Sub;Park, Sung-Jun;Kim, Tae-Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2014
  • In the mechanical design process various types of errors are bound to occur. In order to prevent such mechanical malfunctions and decrease number of instances of errors, various technique are utilized. The purpose of this research is to demonstrate the effectiveness of the combined service Blueprint and FMEA (Failure Mode and Effect Analysis) by applying such method to machine process. The results are as follows: First, modification can be obtained by discovering the failure mode hidden within the inner side of the blueprint. Second, issues within the company are found when conducting the machine design process that is not visible from the outside. Therefore, potential errors can be effectively resolved by preventing failure mode in advance and eventually high quality of the product could be obtained as well as its reliability.

Prediction of Failure Condition for Aloy Seel for Mchine Sructural Use by Design of Experiment (실험계획법을 이용한 기계구조용 특수강의 손상상태 예측)

  • Bae Hyo-jun;Lee Sang-Jae;Kim Young-Hee;Park Heung-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.316-322
    • /
    • 2004
  • Wear volume was used generally to analyze the moving state of lubricated machine. But It is difficult of getting the correct wear volume because wear volume of it is progressed always unstably with a large amplitude on working condition. If correct analysis of wear volume on working condition for lubricated machine can be possible, it can be effect on diagnosis of failure condition. The purpose of this study is carried out to analysis friction factors affecting on wear volume for prediction of failure condition of alloy steel for machine structural use by design of experiment. The results show that the most important friction factors affecting on wear volume was applied load, neat sliding distance, sliding speed and materials.

  • PDF