• Title/Summary/Keyword: Machine Element Design

Search Result 544, Processing Time 0.028 seconds

Software development for the machine element design course (기계요소설계 과목을 위한 교육용 소프트웨어 개발)

  • Park, Gyung-Jin;Do, Sung-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1348-1355
    • /
    • 1997
  • Machine element design is a very important course in the undergraduate program of mechanical engineering in that it presents traditional design concepts. While computer aided design(CAD) receives more attention, students tend to ignore the machine element design or traditional design concepts. However, design methodologies related to machine elements are utilized quite often in practical fields. Also, design methodologies provide good insight for the decision making process of modern design. Generally, CAD is used for simple drafting without the real design process in the undergraduate program. Design software has been developed for various machine elements. Through menu display, a user can select or furnish the design input such as design objects, dimensions, environmental forces and usages, and safety factors. Then the software carries out the design processes which are the same as those of textbooks. The result of the design is filtered to have the values in the standards. The designed machine element is drawn via commercial CAD software. The software has been developed with C language on a personal computer. The developed software is being utilized successfully in a design course, and the experiences are discussed in this paper. The software can be used in industries which require the repeated process of the machine element design.

Design of Linear Transverse Flux Machine for Stelzer Machine using Equivalent Magnet Circuit and FEM

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1596-1603
    • /
    • 2018
  • This paper presents the new design and validation process of the linear transverse flux machine of the stelzer machine for hybrid vehicle application. A linear transverse flux machine is a novel electric machine that has higher force density and power than conventional electric machine. The process concentrates on 2-dimensional and 3-dimensional analysis using equivalent magnetic circuit method considering leakage elements and it is verified by finite element analysis. Besides the force characteristics of all axis of each direction are analyzed. The study is considered by dividing the transverse flux electric excited type and the transverse flux permanent magnet excited type. Additionally three-dimensional analysis in this machine is accomplished due to asymmetric structure with another three axes. Finally, it suggests the new design and validation process of linear transverse flux machine for stelzer machine.

Development of a Tool to Automate One-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.172-176
    • /
    • 2015
  • In this research, a tool was developed to automate one-dimensional finite element analysis (1D FEA) for design of a machine tool spindle. Based on object-oriented programing, this tool employs the objects of a CAD system to construct a geometric model and then to convert it into the FE model of 1D beams at the workbenches of the CAD system with minimum data to define the spindle such as bearing positions and cross-sections of the shaft. Graphic user interfaces were developed for users to interact with the tool. This tool is helpful in identifying a near optimal design of the spindle with the automation of the FEA process with numerous design changes in minimum time and efforts. It is also expected to allow even design engineers to perform the FEA in search of an optimal design of the machine tool spindle.

A Study on Application of Finite Element Method to the Impact test for the Safety of the Splash Guard of a CNC Machine Tool (CNC 공작기계 스프레쉬 가드의 안전성을 위한 충격 시험에 대한 유한요소법 적용에 관한 연구)

  • Kim, Tae Won;Choi, Jin Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.782-788
    • /
    • 2013
  • This study addresses the issue of safety of the splash guard of a computer numerical control (CNC) machine tool at the design stage. As an impact test for evaluating safety requirements such as strength under the safety regulation is an expensive and iterative task, it is necessary to develop a new method to minimize the task of the impact test for development of the machine tool. In this study, explicit finite element method was adopted for replacement of the impact test of the splash guard of a machine tool at the design stage. A finite element model was developed for implementing the impact test on an actual vertical CNC lathe and then produced the analysis including plastic strain and deformation to enable the safety of its splash guard to be determined. The analysis results demonstrated that the finite element method can be applied to safety evaluation for design of the splash guard of a CNC machine tool.

A Study on the Precision Milling Machine Design for Micro Machining (미소가공을 위한 초정밀 밀링머신 설계에 관한 연구)

  • Hwang, Joon;Ji, Kwon-Gu;Chung, Eui-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications. This study can also be provided a basic knowledge for further research of micro factory development.

  • PDF

Dynamic analysis on belt-drive system of machine tools (공작 기계 벨트 구동계의 동적 해석)

  • Kim, S.G.;Lee, S.Y.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.104-111
    • /
    • 1995
  • The needs of ultraprecision machine tools, which manufacture and machine the high precision parts used in computers, semiconductors and othe rprecise machines, have been increased recentrly. So it is important to design the driving parts of the ultraprecision machine tools which affect significantly on the performance of them. In this paper, the dynamic analyses on the belt-drive system were studied. The correlational equations between the acoustic natural frequency and the tension of belt were derived by experiments. The dynamic delections while the dynamic loads on the motor system changed were analyzed by the finite element analysis. The nonlinear characteristics of the bearings on the dynamic performance was studied and the belt connecting the motor to the spindle of a machine tool was modeled by the truss element and the beam element.

  • PDF

A Study on Optimization for Static Characteristics Analysis of Gantry-Type Machining Centers (문형머시닝센터의 구조해석을 통한 최적화에 관한 연구)

  • Yoo, Deck-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.122-128
    • /
    • 2015
  • Recently, as the demand for high efficiency, multi-function machine tools has increased, domestic machine tool industries are investing in research and development for Gantry-Type Machining centers. In this thesis, for the purpose of evaluating machining accuracy and designing a machine tool structure, a simplified model of the main frame is suggested. The results show the general characteristics of the optimum design, and the approach is shown as practicable for the preliminary design analysis and improvement of a conceptual design of a Gantry-Type Machining center. This paper's results are expected to improve the static characteristics of Gantry-Type Machine centers. The three-dimensional finite element models proved that the modeling method might be applied to real machine tool structures.

Analytical Investigation on Fundamental Electrical Characteristics of Large Air-gap Superconducting Synchronous Machine

  • Yazdanian, M.;Elhaminia, P.;Zolghadri, M.R.;Fardmanesh, M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 2013
  • In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show good agreement with FEM results.

A Study on the Analysis and Design for a Ball Screw Whirling Machine (볼스크류 선회형 가공장비의 설계 및 해석에 관한 연구)

  • Lee, Choon-Man;Moon, Sung-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • Recently, a high-precision ball screw is an essential part of high-speed machines. However, producing high-precision ball screws has been costly and time-consuming. Nowadays, a whirling machine is used to produce high-precision ball screws efficiently. Rotating multi-tips are used to turn the ball screw in the whirling machine. In this study, a structural analysis was performed by a finite-element method to develop a whirling machine. An improved model of the whirling machine was proposed by the analysis. In addition, a thermal analysis was performed to confirm the thermal stability. The results of the analysis can be applied in order to further develop the whirling machine.

Design and Characteristic Analysis of an 200[kW], 30000[rpm] Induction Motor for Gearless Turbo Machine (Gearless 터보기기용 200[kW], 30000[rpm] 유도전동기 설계 및 특성 해석)

  • Jo, Won-Young;Woo, Kyung-Il;Cho, Yun-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.420-427
    • /
    • 2006
  • This paper describes design and characteristic analysis of the 200[kW], 3000[rpm] induction motor for gearless turbo machine. It was designed by the loading distribution method and the results of characteristics obtained by the equivalent circuit method are compared with the results of circle diagram. To verify the validation of design 2D finite element method is used and also 3D finite element method is used to calculate the current density curve of the rotor bars when they are broken.