• Title/Summary/Keyword: Machine Element

Search Result 1,292, Processing Time 0.037 seconds

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.271-277
    • /
    • 1997
  • The important parts of the developing AGV model are fabrication of each part and design technology of the body frame. In present day, design of the body frame is depend on the experience of the industry place and the systematic data and the optimal design technology of the frame for the case of model change is insufficient. In this study, the strengths of the AGV(Automatic guided vehicle)are examined with the 3-dimensional Finite Element method. In order to verify the FE results, the computed results are compared with the experimental results are compared with the experimental data from the strain-gage output data. New model designed by removing some parts of the initial model and choosing the thickness change of the rectangular-pipes.

  • PDF

Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates (삼차원 적층복합재 구멍의 형상 최적화)

  • 한석영;마영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.275-280
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study. (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsal-Hill failure index was reduced up to 67% when shape optimization was peformed under the initial volume by volume control of growth-strain method.

  • PDF

Smart Sensor for Machine Condition Monitoring Using Wireless LAN (무선 랜 통신을 이용한 기계 상태감시용 스마트 센서)

  • Tae, Sung-Do;Son, Jong-Duk;Yang, Bo-Suk;Kim, Dong-Hyen
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.523-529
    • /
    • 2009
  • Smart sensor is known as intelligent sensor, it is different with other conventional sensors in the case of intelligent system embedded on it. Smart sensor has many benefits e.g. low-cost in usage, self-decision and self-diagnosis abilities. This sensor consists of perception element(sensing element), signal processing and technology of communication. In this work, a bridge and structure of smart sensor has been investigated to be capable to condition monitoring routine. This investigation involves low power consumption, software programming, fast data acquisition ability, and authoritativeness warranty. Moreover, this work also develops smart sensor to be capable to perform high sampling rate, high resolution of ADC, high memory capacity, and good communication for data transfer. The result shows that the developed smart sensor is promising to be applied to various industrial fields.

A study on the reliability evaluation of driving parts for note handling units (지폐구동장치 구동부품 신뢰성 평가에 관한 연구)

  • Kim J.H.;Chung J.K.;Yoo S.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1307-1310
    • /
    • 2005
  • ATM is element that reliability, stability is important in relation with customer by financial agency used device. To embody high reliability and stability, reliability estimation technology development is important. When new product is developed, performance and reliability evaluation of product are essential element. In this paper, is treating contents on reliability estimation of stepping motor, BLDC motor and solenoid that is main driving source of note handling units.

  • PDF

A Study on the Design of Asperical Lens by using Ray Tracing Method (광선추적방식을 적용한 비구면 렌즈 설계에 관한 연구)

  • Kim S.Y.;Park J.W.;Seo S.H.;Lee S.S.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2019-2023
    • /
    • 2005
  • A aspheric lens is one a key point optical element in the optical industry. The feature of a aspheric lens is not to have the spherical aberration. A aspheric lens is also essential element for high-precision and light-weight in the optical machine. Generally it have been used in a tailor progression an aspheric lens modelling much. In this study we applied a lay back-tracer using a index of refraction to draw a creative aspheric lens. And we executed a comparison experiment for refraction situation of shape and straightness experiment to inspect the drawn aspheric lens in this study

  • PDF

Ultimate Strength of Composite Laminates with Free-Edge Delamination (자유단 충간분리를 갖는 복합재 적층판의 최종 파괴강도)

  • 양광영;윤성운;김재열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presets experimental and analytical studies of ultimate strength of [$[30_2/-30_2/90]_S$ carbon/epoxy laminates with free-edge delamination under uniaxial tension. We performed tensile teat far laminates with Telflon inserted on interfaces to simulate initial free-edge delamination, The experiment reveals that extensional stiffness of the laminate decreases by the initiation of the delamination, and that strength of the laminate without delamination is smaller than that of the laminates with delamination. Generalized quasi-three delamination finite element analysis, which employs energy release rate and maximum stress criteria, predicts the ultimate strength of the laminates with sufficient accuracy.

Flexibility Effects of Frame for Vehicle Dynamic Characteristics (차량 동특성에 대한 프레임의 유연성 효과)

  • 이상범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.