• 제목/요약/키워드: Machine Diagnosis

검색결과 676건 처리시간 0.023초

스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법 (CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images)

  • 강경원;이경민
    • 융합신호처리학회논문지
    • /
    • 제21권3호
    • /
    • pp.121-126
    • /
    • 2020
  • 소리 기반 기계 고장 진단은 기계의 음향 방출 신호에서 비정상적인 소리를 자동으로 감지하는 것이다. 수학적 모델을 사용하는 기존의 방법은 기계 시스템의 복잡성과 잡음과 같은 비선형 요인이 존재하기 때문에 기계 고장 진단이 어려웠다. 따라서 기계 고장 진단의 문제를 딥러닝 기반 이미지 분류 문제로 해결하고자 한다. 본 논문에서 스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법을 제안한다. 제안한 방법은 기계의 결함 시 발생하는 주파수상의 특징 벡터를 효과적으로 추출하기 위해 STFT를 사용하였으며, STFT에 의해 검출된 특징 벡터들은 스펙트로그램 이미지로 변환하여 CNN을 이용해 기계의 상태별로 분류한다. 그 결과는 제안한 방법은 효과적으로 결함을 탐지할 뿐만 아니라 소리 기반의 다양한 자동 진단 시스템에도 효과적으로 활용될 수 있다.

웹기반 가상시계에서의 고장진단에 관한 연구 (A Study on the Fault Diagnosis in Web-based Virtual Machine)

  • 서정완;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.430-434
    • /
    • 2001
  • Virtual manufacturing system is integrated computer model that represents the precise and whole structure of manufacturing system and simulates its physical and logical behavior in operation.[1] A virtual machine is computer model that represents a CNC machine tool and one of core elements of virtual manufacturing system. In this paper, it is emphasized that a virtual machine must be web-based system for serving information to all attendants in a real machine tool without the restriction of time or location, and then in the fault diagnosis, one of important modules of a virtual machine, the methods of both using the controller signal and web-based expert system are proposed.

  • PDF

진동의 주파수분석을 통한 결함 식별 - 회전기계를 중심으로- (Defect Identification through Frequency Analysis of Vibration -In Case of Rotary Machine_)

  • 정윤성;왕지남;김광섭
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.82-90
    • /
    • 1995
  • This paper pressents a condition-based maintenance (CBM) method through bibration analysis. The well known frequency analysis is employed for performing machine fault diagnosis. The statistical control chart is also applied for analyzing the trend of the bearing wear. Vibration sensors are attached to prototype machine and signals are continuously monitored. The sampled data are utilized to evaluate how well the fast fourier transform(FFT) and the statistical control chart techniques could be used to identify defects of machine and to analyze the machine degradation. Experimental results show that the propowed approach could classify every mal-function and could be utilized for real machine diagnosis system.

  • PDF

A Review of Computer Vision Methods for Purpose on Computer-Aided Diagnosis

  • Song, Hyewon;Nguyen, Anh-Duc;Gong, Myoungsik;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2016
  • In the field of Radiology, the Computer Aided Diagnosis is the technology which gives valuable information for surgical purpose. For its importance, several computer vison methods are processed to obtain useful information of images acquired from the imaging devices such as X-ray, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). These methods, called pattern recognition, extract features from images and feed them to some machine learning algorithm to find out meaningful patterns. Then the learned machine is then used for exploring patterns from unseen images. The radiologist can therefore easily find the information used for surgical planning or diagnosis of a patient through the Computer Aided Diagnosis. In this paper, we present a review on three widely-used methods applied to Computer Aided Diagnosis. The first one is the image processing methods which enhance meaningful information such as edge and remove the noise. Based on the improved image quality, we explain the second method called segmentation which separates the image into a set of regions. The separated regions such as bone, tissue, organs are then delivered to machine learning algorithms to extract representative information. We expect that this paper gives readers basic knowledges of the Computer Aided Diagnosis and intuition about computer vision methods applied in this area.

A Study on Machine Fault Diagnosis using Decision Tree

  • Nguyen, Ngoc-Tu;Kwon, Jeong-Min;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.461-467
    • /
    • 2007
  • The paper describes a way to diagnose machine condition based on the expert system. In this paper, an expert system-decision tree is built and experimented to diagnose and to detect machine defects. The main objective of this study is to provide a simple way to monitor machine status by synthesizing the knowledge and experiences on the diagnostic case histories of the rotating machinery. A traditional decision tree has been constructed using vibration-based inputs. Some case studies are provided to illustrate the application and advantages of the decision tree system for machine fault diagnosis.

인터넷을 이용한 공작기계 원격 고장 진단 시스템 구축에 관한 연구

  • 강대천;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.868-871
    • /
    • 1995
  • In order to remain competitive, a manufacturing company needs to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system comprises complex mechanical as well as electronic components. Therefore, diagnosing the troubles of machine tools is a tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary services at the right time is very difficult and expensive, a remote diagnosis system is to be regarded as a good alternative,with which users can diagnose and fix the machine troubles. This paper presents a framework for a remote machine tool diagnosis system using the world wide web technology and backward reasoning expert system.

  • PDF

화상해석에 의한 기계윤할 운동면의 작동상태 진단 (Operating Condition Diagnosis of the Lubricated Machine Moving Surface by Image Analysis)

  • 박흥식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.79-87
    • /
    • 1999
  • The most part of the faculty drop a trouble and damage of machine equipment even if whatever cause they break out take place at local and trifling place and the factor dominating their trouble is due to wear debris occurred in the lubricated machine moving surface. This study has been car-ried out to identify morphology of wear debris on the lubricated machine moving system by means of computer image analysis. Namely the wear debris contained in lubricating oil extracted from movable machine equipment will be filtered through membrane filter(void diameter 0.45${\mu}m$) and will be analyzed with its data information such as 50% volume diameter aspect roundness and reflectivity. Morphological characteristic of wear debris is easily distinguished by four shape parameters it is necessary to divide small class of every 100 wear debris in total wear particles in order to distinguish morphological characteristic of wear debris more easily by computer image analysis. We are sure that operation condition diagnosis of the lubricated machine moving surfaces is possible by computer image analysis.

  • PDF

공작기계 고장 진단 전문가 시스템 개발 (Development of an Expert System for Diagnosing Machine Tool Failures)

  • 서동규;강무진
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.217-224
    • /
    • 1999
  • Trouble shooting of modern machine tools equipped with sophisticated electronic as well as mechanical parts is so difficult that it is usually depends upon the experience and accumulated knowledge of the diagnosing persons. On the other hand, tool users are scattered in wide area, which makes it expensive for a machine tool maker to run a vast service network. An unmanned diagnosis system to which users can have access at all times could be an efficient alternative. For this purpose, a rule-based expert system for diagnosing machine tools is developed. This paper describes the structure of diagnostic knowledge, the rule firing mechanism, the diagnosis flow, and user query process. An example shows the feasibility of problem solving on site without help of a service expert from machine tool maker.

  • PDF

결함 데이터를 필요로 하지 않는 연속 은닉 마르코프 모델을 이용한 새로운 기계상태 진단 기법 (New Machine Condition Diagnosis Method Not Requiring Fault Data Using Continuous Hidden Markov Model)

  • 이종민;황요하
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.146-153
    • /
    • 2011
  • Model based machine condition diagnosis methods are generally using a normal and many failure models which need sufficient data to train the models. However, data, especially for failure modes of interest, is very hard to get in real applications. So their industrial applications are either severely limited or impossible when the failure models cannot be trained. In this paper, continuous hidden Markov model(CHMM) with only a normal model has been suggested as a very promising machine condition diagnosis method which can be easily used for industrial applications. Generally hidden Markov model also uses many pattern models to recognize specific patterns and the recognition results of CHMM show the likelihood trend of models. By observing this likelihood trend of a normal model, it is possible to detect failures. This method has been successively applied to arc weld defect diagnosis. The result shows CHMM's big potential as a machine condition monitoring method.

설비진단기술를 활용한 적응보전 (Adaptive Maintenance Using Machine Condition Diagnosis Technique)

  • 송원섭;강인선
    • 산업경영시스템학회지
    • /
    • 제17권30호
    • /
    • pp.73-79
    • /
    • 1994
  • This paper propose Adaptive Maintenance as a new type of maintenance for machine failures which are unpredictable. A purpose of adpative maintenance is to decrease inconsistency. In order to pick up some of problems the traditional maintenance policy, We discussed Time Based Maintenance(TBM) and Condition Based Maintenance(CBM) with Bath-Tub Curve. By using Machine Condition Diagnosis Technique (CDT), Monitored condition maintenance deals with the dynamic decision making for diagnosis procedures at maintenance and caution level. Adaptive Maintenance is a powerful tool for Total Production Maintenance(TPM).

  • PDF