• 제목/요약/키워드: Machine Computation

검색결과 297건 처리시간 0.02초

다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발 (A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model)

  • Joon Hyun Kim
    • 한국토양환경학회지
    • /
    • 제1권1호
    • /
    • pp.89-102
    • /
    • 1996
  • 지하의 유체 유동 및 물질 변환을 해석하기 위하여 다중다상이론을 이용한 통합 모형을 개발하였다 종합적 지배식은 4개의 상내의 화합물들의 물질 및 힘평형 관계를 고려하여 유도되었다. 복합한 이동 및 변환 현상을 설명하고, 공간적 차원을 변동적으로 나타내기 위하여 관계된 모든 변수 및 식들을 함축적이면서 조직적으로 표현하였다. 도출된 비선형시스템은 다차원 유한요소프로_I램으로서 해를 구하였다. 본 개발된 프로그램은 역동적으로 메모리 용량을 조절하여 일이삼차원 문제를 PC부터 SP2슈퍼컴퓨터까지 여러 종류의 기종에서 해석할 수 있다. 계산시간과 저장용량을 줄이기 위하여 시스템식을 분리시키고, 슈퍼컴의 벡터 및 병렬처리를 이용하여 띠행렬의 해를 구하였다. 유속이 우세한 경우의 수치해석상의 불안정한 문제를 해결하기 위하여 상류가중, 질량묶음, 요소별 파라미터 평가법 등을 적용하였다. 일차원 이동문제에 대하여 유한요소법과 유한차분법의 수치해의 안정성 조건을 검토하였다. 구체적인 지하수 유동 및 오염문제에 대한 모델링 예는 본 논문집의 연계 논문에 수록하였다.

  • PDF

대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템 (Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning)

  • 바트셀렘;박영택
    • 정보과학회 논문지
    • /
    • 제43권10호
    • /
    • pp.1115-1123
    • /
    • 2016
  • 가정기반진리관리 시스템(ATMS)은 추론 시스템의 추론 과정을 저장하고 비단조추론을 지원할 수 있는 도구이다. 또한 의존기반 backtracking을 지원하므로 매우 넓은 공간 탐색 문제를 해결 할 수 있는 강력한 도구이다. 모든 추론 과정을 기록하고, 특정한 컨텍스트에서 지능형시스템의 Belief를 매우 빠르게 확인하고 비단조 추론 문제에 대한 해결책을 효율적으로 제공할 수 있게 한다. 그러나 최근 데이터의 양이 방대해지면서 기존의 단일 머신을 사용하는 경우 문제 해결 프로그램의 대용량의 추론과정을 저장하는 것이 불가능하게 되었다. 대용량 데이터에 대한 문제 해결 과정을 기록하는 것은 많은 연산과 메모리 오버헤드를 야기한다. 이러한 단점을 극복하기 위해 본 논문에서는 Apache Spark 환경에서 functional 및 객체지향 방식 기반의 점진적 컨텍스트 추론을 유지할 수 있는 방법을 제안한다. 이는 가정(Assumption)과 유도과정을 분산 환경에 저장하며, 실체화된 대용량 데이터셋의 변화를 효율적으로 수정가능하게 한다. 또한 ATMS의 Label, Environment를 분산 처리하여 대규모의 추론 과정을 효과적으로 관리할 수 있는 방안을 제시하고 있다. 제안하는 시스템의 성능을 측정하기 위해 5개의 노드로 구성된 클러스터에서 LUBM 데이터셋에 대한 OWL/RDFS 추론을 수행하고, 데이터의 추가, 설명, 제거에 대한 실험을 수행하였다. LUBM2000에 대하여 추론을 수행한 결과 80GB데이터가 추론되었고, ATMS에 적용하여 추가, 설명, 제거에 대하여 수초 내에 처리하는 성능을 보였다.

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.29-35
    • /
    • 2020
  • 본 논문에서는 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 최근 자연어처리 분야는 방대한 양의 말뭉치로 사전 학습된 언어 표현 모델을 활용하는 연구가 활발하다. 특히 자연어처리 분야 중 하나인 개체명인식은 대부분 지도학습 방식을 사용하는데, 충분히 많은 양의 학습 데이터 세트와 학습 연산량이 필요하다는 단점이 있다. 강화학습은 초기 데이터 없이 시행착오 경험을 통해 학습하는 방식으로 다른 기계학습 방법론보다 조금 더 사람이 학습하는 과정에 가까운 알고리즘으로 아직 자연어처리 분야에는 많이 적용되지 않은 분야이다. 아타리 게임이나 알파고 등 시뮬레이션 가능한 게임 환경에서 많이 사용된다. BERT는 대량의 말뭉치와 연산량으로 학습된 구글에서 개발한 범용 언어 모델이다. 최근 자연어 처리 연구 분야에서 높은 성능을 보이고 있는 언어 모델이며 많은 자연어처리 하위분야에서도 높은 정확도를 나타낸다. 본 논문에서는 이러한 DQN, BERT 두가지 딥러닝 모델을 이용한 새로운 구조의 개체명 인식 DeNERT 모델을 제안한다. 제안하는 모델은 범용 언어 모델의 장점인 언어 표현력을 기반으로 강화학습 모델의 학습 환경을 만드는 방법으로 학습된다. 이러한 방식으로 학습된 DeNERT 모델은 적은 양의 학습 데이터세트로 더욱 빠른 추론시간과 높은 성능을 갖는 모델이다. 마지막으로 제안하는 모델의 개체명 인식 성능평가를 위해 실험을 통해서 검증한다.

ECDSA 하드웨어 가속기가 내장된 보안 SoC (A Security SoC embedded with ECDSA Hardware Accelerator)

  • 정영수;김민주;신경욱
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.1071-1077
    • /
    • 2022
  • 타원곡선 암호 (elliptic curve cryptography; ECC) 기반의 공개키 기반구조 구현에 사용될 수 있는 보안 SoC(system-on-chip)를 설계하였다. 보안 SoC는 타원곡선 디지털 서명 알고리듬 (elliptic curve digital signature algorithm; ECDSA)용 하드웨어 가속기가 AXI4-Lite 버스를 통해 Cortex-A53 CPU와 인터페이스된 구조를 갖는다. ECDSA 하드웨어 가속기는 고성능 ECC 프로세서, SHA3 (secure hash algorithm 3) 해시 코어, 난수 생성기, 모듈러 곱셈기, BRAM (block random access memory), 그리고 제어 FSM (finite state machine)으로 구성되며, 최소의 CPU 제어로 ECDSA 서명 생성과 서명 검증을 고성능으로 연산할 수 있도록 설계되었다. 보안 SoC를 Zynq UltraScale+ MPSoC 디바이스에 구현하여 하드웨어-소프트웨어 통합 검증을 하였으며, 150 MHz 클록 주파수로 동작하여 초당 약 1,000번의 ECDSA 서명 생성 또는 서명 검증 연산 성능을 갖는 것으로 평가되었다. ECDSA 하드웨어 가속기는 74,630개의 LUT (look-up table)와 23,356개의 플립플롭, 32kb BRAM 그리고 36개의 DSP (digital signal processing) 블록의 하드웨어 자원이 사용되었다.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로 (Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv)

  • 박대민;이한종
    • 정보화정책
    • /
    • 제31권2호
    • /
    • pp.3-38
    • /
    • 2024
  • 환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.