Proceedings of the Korean Society of Machine Tool Engineers Conference
/
1997.10a
/
pp.213-218
/
1997
Thermal deformation of machine origin of machine tools due to internal and external heat sources has been the most important problem to fabricate products with higher accuracy and performance. In order to solve this problem, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining ceneter through measurement of temperature data of specific points on the machine tool. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Input variables and orders are automatically selected by correlation and optimization procedure. Sensors with small influence are deleted automatically in this algorithm. It was shown that the points of temperature measurement can be reduced without sacrificing the estimation accuracy of $\pm$5${\mu}{\textrm}{m}$. From the experimental result, it was confirmed that GMDH methodology was superior to least square models to estimate the thermal behavior of machine tools.
Objective: Lingual fixed retainers, made from 0.0175-inch 3-strand twisted stainless steel wire (TW) and 0.016 × 0.022-inch straight rectangular wire (RW), are generally used in clinical practice. This study aimed to calculate their accuracy by comparing the discrepancy between computer-aided customized retainers made from these two types of wires. Methods: Eleven orthodontic patients were selected, resulting in 22 maxillary and mandibular three-dimensional printing dental models. Two types of lingual fixed retainers were bonded from canine to canine. To determine the accuracy, five points were chosen for each model, resulting in 110 selected points. The absolute values of the distances on the x-, y-, and z-axes were measured to compare the accuracy of the two types of computer-aided retainers. Results: The accuracy of the two types of retainers did not differ significantly in the x- and z-axes, but only in the y-axis (P < 0.01), where RW-fixed retainers exhibited a slightly but significantly increased distance compared to the TW. Conclusions: Both types of retainers showed high accuracy; however, RW had a slight but statistically significant difference along the y-axis compared with TW. This type of computer-aided design/computer-aided manufacturing bending machine is limited to two dimensions, and the dental arch is curved. Therefore, RW may require slight manual adjustment by the practitioner after manufacturing.
Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
Journal of Periodontal and Implant Science
/
v.53
no.1
/
pp.38-53
/
2023
Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.
Transactions of the Korean Society of Machine Tool Engineers
/
v.13
no.3
/
pp.16-23
/
2004
Thermally induced errors of machine tools have been recognized as one of the most important issues in precision machining. This is probably the most formidable obstacle to obtain high level of machining accuracy. To this regard, the experimental compensation methodologies such as software-based method or origin shift of machine tool axes have been suggested. In this research, to cope with thermal deformation, a model based correction was carried out with the function of an external machine coordinate shift. Models with multi-linear regression or neural network were investigated to selected a good one for thermal compensation. Consequently, multi-linear regression model combined with origin shift was verified good enough form the machining of dot matrices of plate with ball end milling.
Proceedings of the Korean Society of Precision Engineering Conference
/
2000.05a
/
pp.866-869
/
2000
The finishing process for die is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But die automatic finishing machine has the problems such as low supply rate and high machine price. In this paper 3-axis machine was applied to the die finishing. And to improve form accuracy of die finishing path was regenerated. The finishing path considered tilting of finishing tool. and variation of machining force with contacting point between finishing and workpiece.
Proceedings of the Korean Society of Precision Engineering Conference
/
2005.06a
/
pp.309-312
/
2005
DTM (Diamond Turning Machine) is using for ultra precision manufacturing such as, plastic lens die or aspherical optics. This study is on a design of precision 2-axis stage for DTM. We designed and manufactured a back lash free stage using different weights and measured the positioning accuracy using Interferometer. Also, the 2-D moving accuracy is measured using the high magnification CCD technique. Then, the stage is tested with the machining of spherical and aspherical lens in a DTM with air bearing spindle. It was shown that the back lash free stage is effective for improving the positioning accuracy. Also, positioning control errors in motion control board were able to be found using the proposed stages system.
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.7
/
pp.1324-1330
/
2007
In this paper, we propose pattern recognition algorithm for activities of daily living by adopting extreme learning machine based on single layer feedforward networks(SLFNs) to the signal from bidirectional accelerometer. For activity classification, 20 persons are participated and we acquire 6, types of signals at standing, walking, running, sitting, lying, and falling. Then, we design input vector using reduced model for ELM input. In ELM classification results, we can find accuracy change by increasing the number of hidden neurons. As a result, we find the accuracy is increased by increasing the number of hidden neuron. ELM is able to classify more than 80 % accuracy for experimental data set when the number of hidden is more than 20.
Proceedings of the Korean Society of Precision Engineering Conference
/
2000.05a
/
pp.681-686
/
2000
Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.
Journal of the Korean Society for Precision Engineering
/
v.17
no.7
/
pp.232-240
/
2000
Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.2904-2926
/
2022
Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.