• Title/Summary/Keyword: Machine Accuracy

Search Result 3,200, Processing Time 0.026 seconds

A Study on the Comparison of Predictive Models of Cardiovascular Disease Incidence Based on Machine Learning

  • Ji Woo SEOK;Won ro LEE;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, a study was conducted to compare the prediction model of cardiovascular disease occurrence. It is the No.1 disease that accounts for 1/3 of the world's causes of death, and it is also the No. 2 cause of death in Korea. Primary prevention is the most important factor in preventing cardiovascular diseases before they occur. Early diagnosis and treatment are also more important, as they play a role in reducing mortality and morbidity. The Results of an experiment using Azure ML, Logistic Regression showed 88.6% accuracy, Decision Tree showed 86.4% accuracy, and Support Vector Machine (SVM) showed 83.7% accuracy. In addition to the accuracy of the ROC curve, AUC is 94.5%, 93%, and 92.4%, indicating that the performance of the machine learning algorithm model is suitable, and among them, the results of applying the logistic regression algorithm model are the most accurate. Through this paper, visualization by comparing the algorithms can serve as an objective assistant for diagnosis and guide the direction of diagnosis made by doctors in the actual medical field.

Machine Learning Model of Gyro Sensor Data for Drone Flight Control (드론 비행 조종을 위한 자이로센서 데이터 기계학습 모델)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.

Feature Selection and Hyper-Parameter Tuning for Optimizing Decision Tree Algorithm on Heart Disease Classification

  • Tsehay Admassu Assegie;Sushma S.J;Bhavya B.G;Padmashree S
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.150-154
    • /
    • 2024
  • In recent years, there are extensive researches on the applications of machine learning to the automation and decision support for medical experts during disease detection. However, the performance of machine learning still needs improvement so that machine learning model produces result that is more accurate and reliable for disease detection. Selecting the hyper-parameter that could produce the possible maximum classification accuracy on medical dataset is the most challenging task in developing decision support systems with machine learning algorithms for medical dataset classification. Moreover, selecting the features that best characterizes a disease is another challenge in developing machine-learning model with better classification accuracy. In this study, we have proposed an optimized decision tree model for heart disease classification by using heart disease dataset collected from kaggle data repository. The proposed model is evaluated and experimental test reveals that the performance of decision tree improves when an optimal number of features are used for training. Overall, the accuracy of the proposed decision tree model is 98.2% for heart disease classification.

An Empirical Study on Improving the Accuracy of Demand Forecasting Based on Multi-Machine Learning (다중 머신러닝 기법을 활용한 무기체계 수리부속 수요예측 정확도 개선에 관한 실증연구)

  • Myunghwa Kim;Yeonjun Lee;Sangwoo Park;Kunwoo Kim;Taehee Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.406-415
    • /
    • 2024
  • As the equipment of the military has become more advanced and expensive, the cost of securing spare parts is also constantly increasing along with the increase in equipment assets. In particular, forecasting demand for spare parts one of the important management tasks in the military, and the accuracy of these predictions is directly related to military operations and cost management. However, because the demand for spare parts is intermittent and irregular, it is often difficult to make accurate predictions using traditional statistical methods or a single statistical or machine learning model. In this paper, we propose a model that can increase the accuracy of demand forecasting for irregular patterns of spare parts demanding by using a combination of statistical and machine learning algorithm, and through experiments on Cheonma spare parts demanding data.

Development of a high precision CNC lathe for mirror surface machining (경면가공용 고정밀 CNC 선반 개발)

  • 박청홍;이후상;신영재;이군석;김춘배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF

A Novel Feature Selection Method for Output Coding based Multiclass SVM (출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.795-801
    • /
    • 2013
  • Recently, support vector machine has been widely used in various application fields due to its superiority of classification performance comparing with decision tree and neural network. Since support vector machine is basically designed for the binary classification problem, output coding method to analyze the classification result of multiclass binary classifier is used for the application of support vector machine into the multiclass problem. However, previous feature selection method for output coding based support vector machine found the features to improve the overall classification accuracy instead of improving each classification accuracy of each classifier. In this paper, we propose the novel feature selection method to find the features for maximizing the classification accuracy of each binary classifier in output coding based support vector machine. Experimental result showed that proposed method significantly improved the classification accuracy comparing with previous feature selection method.

Correlation Analysis of Dataset Size and Accuracy of the CNN-based Malware Detection Algorithm (CNN Mobile Net 기반 악성코드 탐지 모델에서의 학습 데이터 크기와 검출 정확도의 상관관계 분석)

  • Choi, Dong Jun;Lee, Jae Woo
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • At the present stage of the fourth industrial revolution, machine learning and artificial intelligence technologies are rapidly developing, and there is a movement to apply machine learning technology in the security field. Malicious code, including new and transformed, generates an average of 390,000 a day worldwide. Statistics show that security companies ignore or miss 31 percent of alarms. As many malicious codes are generated, it is becoming difficult for humans to detect all malicious codes. As a result, research on the detection of malware and network intrusion events through machine learning is being actively conducted in academia and industry. In international conferences and journals, research on security data analysis using deep learning, a field of machine learning, is presented. have. However, these papers focus on detection accuracy and modify several parameters to improve detection accuracy but do not consider the ratio of dataset. Therefore, this paper aims to reduce the cost and resources of many machine learning research by finding the ratio of dataset that can derive the highest detection accuracy in CNN Mobile net-based malware detection model.

A study on the test workpiece for accuracy analysis of multi-axis turning and milling center (선반 및 밀링 겸용 다축 복합가공기의 정밀도 검증을 위한 표준공작물에 대한 연구)

  • Shin, Jae-Hun;Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.277-284
    • /
    • 2018
  • Recently, the demand for precision machining through multi-axis machining has been greatly increased. However, it is difficult to evaluate the geometrical accuracy of the machine tool because of its complicated geometric relationship. In this study, we organized the KS/ISO specifications which are distributed in various regulations, and re-organized the geometrical precision evaluation items of multi-axis machine tools. In addition, a test workpiece was proposed to evaluate and analyze the accuracy of a multi-axis machine tool, and a test workpiece was machined according to predetermined methods and procedures, and then the machined surfaces were measured using CMM. As a result, it was verified that the machining results of the standard workpiece and the precision of the machine tool were very similar qualitatively and quantitatively. From these results, it can be confirmed that the precision analysis of the multi-axis machine tool is possible only by machining the test workpiece.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.