• Title/Summary/Keyword: Mach number

Search Result 677, Processing Time 0.021 seconds

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Experimental Study of the Multi-Row Disk Inlet

  • Maru, Yusuke;Kobayashi, Hiroaki;Kojima, Takoyuki;Sato, Tetsuya;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.634-643
    • /
    • 2004
  • In this paper are presented a concept of a new supersonic air inlet, which is designated a Multi-Row Disk (MRD) inlet, aiming at performance improvement under off-design conditions, and results of wind tunnel tests examined performance characteristics of the MRD inlet. The MRD inlet is frequently called ‘a skeleton inlet’ because of its appearance. The performance of a conventional axisymmetric inlet with a solid center body (spike) deteriorates under off-design Mach number conditions. It is due to the fact that total pressure recovery (TPR) governed by the throat area of inlet and mass capture ratio (MCR) governed by an incidence position of an oblique shock from the spike tip into the cowl can not be controlled independently in such air inlet. The MRD inlet has the spike that is composed of a tip cone and several disks arranged downstream of it, based on the experimental fact that several deep cavities on a conical surface have little negative effect on the boundary layer growth. The overall spike length of the MRD inlet is adjustable to the given flight speed by changing space between disks so that a spillage flow can be controlled independently from controlling the throat area. It could be made clear from the result of wind tunnel tests that the MRD inlet improves TPR by 10% compared with a conventional inlet with a solid spike under off-design conditions.

  • PDF

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

PIV Measurement and Color Schlieren Observation of Supersonic Jets (PIV 및 컬러 쉴리렌 기법을 이용한 초음속 제트 관측)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.604-605
    • /
    • 2017
  • The present work aims at visualization of the supersonic air jet flows discharged from C-D nozzles. In the present experiments, Prticle Image Velocimetry (PIV) was employed to specify the jet flow field quantitatively, and a color Schlieren optical method was applied to observe the same jets qualitatively. The $0.5{\mu}s$ duration of spark light source was used for Schlieren and it can be controled as $0.5{\mu}s$, $1{\mu}s$, $2{\mu}s$ and focusing mode. The convergent-divergent nozzles were used to generate the jet flow with the design Mach number of 2.0, 2.2. Nozzle pressure ratios (NPRs) were varied from 5 to 8. A good comparison of the jet size and shock location from the Schlieren images with the PIV quantitative values is obtained. The obtained images clearly showed the major features of the under-expanded jet, over-expanded jet, sound wave, turbulent eddies and so on.

  • PDF

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Key Parameters and Research Review on Counterflow Jet Study in USA for Drag Reduction of a High-speed Vehicle (초고속 비행체 항력감소를 위한 미국의 분사 제트 연구 동향과 핵심 변수)

  • Kim, Jihong;Kang, Seungwon;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • Various studies have been conducted for drag reduction of a high-speed vehicle by injecting counterflow jet from its nose cone. In this study, in order to obtain baseline data and key parameters for drag reduction method, the counterflow jet study of the USA is reviewed and summarized. The nose cone shapes of each study are hemisphere cylinder, truncated cone, and reentry capsule, and their test conditions are summarized accordingly. Key parameters for drag reduction are jet mach number, mass flow rate, and pressure ratio. Even though drag reduction effects show various results according to given test conditions, it is found that the drag reduction effect reaches up to 40~50%.

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.

A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft (항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템)

  • Jung, Sun-Ki;Anh Duong, Hoang;Lee, Young-Min;Lee, Jin-Hee;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.532-540
    • /
    • 2008
  • Recently there are growing interests in calculating aerodynamic characteristics of aircraft configurations with structural deformation using the FSI(Fluid-Structure Interaction) system in which CFD(Computational Fluid Dynamics) and CSD(Computational Structure Dynamics) modules are coupled. In this paper the FSI system comprised of CAD, CFD, CSD, VSI(Volume Spline Interpolation) and grid deformation modules was constructed in order to investigate aerodynamic characteristics of the deformed shape. In the process VSI and grid generation modules are developed to combine CSD and CFD routines and to regenerate the aerodynamic grids for the deformed shape, respectively. For the CFD and CSD analysis, commercial programs FLUENT and NASTRAN were used. As a test model, DLR-F4 wing configuration was chosen and its aerodynamic characteristics were calculated by applying the static FSI system. It was shown that lift and drag coefficients of the wing at mach number 0.75 are reduced to 20.26% and 18.5%, respectively, owing to the structural deformation.

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

A Study on the Structural Integrity of Hypersonic Vehicles According to Flight Conditions (비행 환경에 따른 극초음속 비행체의 구조 건전성에 관한 연구)

  • Kang, Yeon Cheol;Kim, Gyubin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.695-704
    • /
    • 2019
  • In hypersonic regime, the complicated interaction between the air and surface of aircraft results in intensive aerodynamic heating on body. Provided this phenomenon occurs on a hypersonic vehicle, the temperature of the body extremely increases. And consequently, thermal deformation is produced and material properties are degraded. Furthermore, those affect both the aerothermoelastic stability and thermal safety of structures significantly. With the background, thermal safety and dynamic stability are studied according to the altitude, flight time and Mach number. Based on the investigation, design guideline is suggested to guarantees the structural integrity of hypersonic vehicles in terms of both of thermal safety and dynamic stability.